1.033/1.57

Mechanics of Material Systems

(Mechanics and Durability of Solids I)

Franz-Josef Ulm

Lecture: MWF1 // Recitation: F3:00-4:30

Part II: Momentum Balance, Stresses and Stress States

4. Stress States / Failure Criteria

Content 1.033/1.57

Part I. Deformation and Strain

- 1 Description of Finite Deformation
- 2 Infinitesimal Deformation

Part II. Momentum Balance and Stresses

3 Momentum Balance

4 Stress States / Failure Criterion

Part III. Elasticity and Elasticity Bounds

- 5 Thermoelasticity,
- 6 Variational Methods

Part IV. Plasticity and Yield Design

- 7 1D-Plasticity An Energy Approac
- 8 Plasticity Models
- 9 Limit Analysis and Yield Design

Stress Vector and Stress Components

Stress components on a material surface oriented by unit normal **n**

Stress components on a material surface oriented in the principal stress direction $\mathbf{n} = \mathbf{u}_I$

Stress Vector in the Principal Stress Space

Stress Vector in the Mohr Plane

Mohr Circles and The Mohr Circle

1.033/1.57 Mechanics of Material Systems

Selected Stress States: Hydrostatic Pressure

$$\sigma = -p1$$

Material Plane

Mohr Stress Plane

Selected Stress States: Uniaxial Tension

$$\mathbf{\sigma} = \sigma_{I} \mathbf{e}_{z} \otimes \mathbf{e}_{z}$$

Material Plane

Mohr Stress Plane

Selected Stress States: Pure Shear

$$\sigma = \tau \left(\mathbf{e}_{x} \otimes \mathbf{e}_{y} + \mathbf{e}_{y} \otimes \mathbf{e}_{x} \right)$$

Material Plane

Mohr Stress Plane

Selected Stress States: Plane Stress

$$\mathbf{T}(\mathbf{n} = \mathbf{e}_z) = \mathbf{\sigma} \cdot \mathbf{e}_z = 0$$

Material Plane

Mohr Stress Plane

1.033/1.57 Mechanics of Material Systems

Tension Cut-Off $\sigma_I = f_t$ τ Shear **Direct Tension** $- au_{ ext{max}}$

1.033/1.57 Mechanics of Material Systems

Tresca Criterion

Tresca Criterion: Application

1.033/1.57 Mechanics of Material Systems

1.033/1.57 Mechanics of Material Systems

Training Set: Excavation Set

Max. Excavation Depth of Tresca Material

Homework Set #2

Part I: Triaxial Test

Part II: Circular Foundation