1.033/1.57

Mechanics of Material Systems

(Mechanics and Durability of Solids I)

Franz-Josef Ulm

Lecture: MWF1 // Recitation: F3:00-4:30

Part IV: Plasticity and Yield Design

7. 1D-Plasticity – An Energy Approach

Content 1.033/1.57

Part I. Deformation and Strain

- 1 Description of Finite Deformation
- 2 Infinitesimal Deformation

Part II. Momentum Balance and Stresses

- 3 Momentum Balance
- 4 Stress States / Failure Criterion

Part III. Elasticity and Elasticity Bounds

- 5 Thermoelasticity,
- 6 Variational Methods

Part IV. Plasticity and Yield Design

- 7 1D-Plasticity An Energy Approach
- 8 Plasticity Models
- 9 Limit Analysis and Yield Design

Friction Element

1D-Think Model of Ideal Plasticity

1D-Think Model of Hardening Plasticity

A model for the origin of the hardening energy

Energy Dissipation in Hardening Plasticity

1D-Kinematic Hardening Model

1D-Isotropic Hardening Model

1D-Viscoplasticity

Training Set: Stefani Model

Stefani Model: Multisurface Plasticity

Stefani Model: Generalized Force Plane

Stefani Model: Dissipative Mechanisms

(a)

(b)

Stefani Model: Response under Cyclic Loading

