1.033/1.57

Mechanics of Material Systems

(Mechanics and Durability of Solids I)

Franz-Josef Ulm

Lecture: MWF1 // Recitation: F 3:00-4:30

Part IV: Plasticity and Yield Design

8. Plasticity Models

Content 1.033/1.57

Part I. Deformation and Strain

- 1 Description of Finite Deformation
- 2 Infinitesimal Deformation

Part II. Momentum Balance and Stresses

- 3 Momentum Balance
- 4 Stress States / Failure Criterion

Part III. Elasticity and Elasticity Bounds

- 5 Thermoelasticity,
- 6 Variational Methods

Part IV. Plasticity and Yield Design

- 8 Plasticity Models
- 9 Limit Analysis and Yield Design

$1D \rightarrow$

Stress σ , Strain ϵ

Plastic Strain ε^p

Hardening Variable χ

Hardening Force ζ

$$f = |\sigma + \zeta| - k \le 0$$

$$\varphi dt = \sigma d\varepsilon - d\Psi \ge 0$$

$$etc$$

$1D \rightarrow 3D$ Extension

Stress σ , Strain ε

Plastic Strain ε^p

Hardening Variable χ

Hardening Force ζ

$$f = |\sigma + \zeta| - k \le 0$$

$$\phi dt = \sigma d\epsilon - d\Psi \ge 0$$

etc

Stress Tensor σ, Strain ε

Plastic Strain Tensor ε^p

Hardening Variables χ , χ

Hardening Forces ζ , ζ

$$f = |\mathbf{s} + \boldsymbol{\zeta}| - k \le 0$$

$$\varphi dt = \sigma : d\epsilon - d\Psi \ge 0$$

etc

Convexity of Elasticity Domain

1.033/1.57: Mechanics of Material Systems

Example: Crystal Structure of Steel

Slippage planes = Direction of permanent deformation

Sliding in a Monocrystal ("Kinematics")

Stress Vector on Deviator Plane

Von-Mises Plasticity: Yield Criterion

Principal Stress Space

Deviator Plane

Von-Mises Plasticity: "Kinematics"

Drucker-Prager Plasticity: Yield Criterion

1.033/1.57: Mechanics of Material Systems

Drucker-Prager Plasticity: "Kinematics"

Drucker-Prager Plasticity: Thermodynamic Restrictions

Associated Plasticity

Non-Associated Plasticity

Plastic Hardening Models

Isotropic Hardening

$$f(\sigma, \zeta) \leq 0$$

Kinematical Hardening $f(\sigma, \zeta) \leq 0$

Cam-Clay Model: Yield Criterion

Cam-Clay Model: "Kinematics"

