
1.050:  Continuum Strength Models (HW#5) 
 

Due: October 10, 2007 
 
MIT – 1.050 (Engineering Mechanics I) 
Fall 2007 
Instructor: Markus J. BUEHLER 
 
 
 
Team Building and Team Work: We strongly encourage you to form Homework teams of three 
students. Each team only submits one solution for correction. We expect true team work, i.e. one where 
everybody contributes equally to the result. This is testified by the team members signing at the end of the 
team copy a written declaration that "the undersigned have equally contributed to the homework". Ideally, 
each student will work first individually through the homework set. The team then meets and discusses 
questions, difficulties and solutions, and eventually, meets with TA or instructor. Important: Specify all 
resources you use for your solution. 
 
The following set of exercises is designed to train you in the use of equilibrium and strength 
models for continuum systems. For each exercise, show us how you came to your answer and 
result. We highly encourage you to make drawings where appropriate.   
 
1. Stress state and strength criterion: We consider the next two stress tensors (parameter 

p > 0 ), given in a Cartesian system of coordinates of basis (er1 ,er2 ,er3 ) : 
 

⎡3 0 0 ⎤ ⎡ 0 − 2 0⎤
⎢ ⎥ ⎢ ⎥σ = p 0 2 0 ; σ = p − 2 − 3 0  ⎢ ⎥ ⎢ ⎥
⎢0 0 ⎥ ⎢⎣ −1 ⎥⎦ ⎣ 0 0 3⎦

 
For each stress tensor, obtain: 
 
a. The eigenvalues and eigenvectors. 
b. Display the Mohr circles. 
c. Find the minimal value of p at which the material fails for a material governed by a 

Tresca strength criterion of cohesion c = 1. 
d. Find the two failure planes (in the (er1,er2 ,er3 )  basis) and the stress vectors that act on 

them. 
e. What is the underlying assumption for the Tresca strength model? 
f. Answer the same questions (a through d) in the case of a material governed by a Mohr-

Coulomb criterion of cohesion c = 1 and of friction angle ϕ = π / 5 . 
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2. A nano truss:  Advances in nanoscience and nanotechnology* now enable us to build 
structures at molecular scales, with atomistic precision.  An important building block of 
many nanostructures are carbon nanotubes (CNTs), a particularly sturdy form of carbon 
arranged in a tubular structure.  A picture of a CNT is shown below.   
 
From a mechanical perspective, CNTs are particularly intriguing as they are one of the 
strongest and stiffest materials known; yet, they are extremely lightweight.  Applications of 
CNTs range from reinforcement for concrete (to supplement or replace steel reinforcement), 
polymers to important applications in energy related technologies, such as hydrogen storage 
for fuel cell applications. Nanoscopic truss structures of CNTs may find applications in ultra-
small devices to clean water, to harvest sunlight or to analyze genetic information.   
 
This exercise introduces you to the possibility to utilize structural engineering tools typically 
applied to ‘macroscopic’ objects like bridges, buildings etc. to nanostructured objects.   

 

 
Snapshots of a CNT.  It can be envisioned as a rolled up sheet of graphene (graphene 

denotes a single layer in graphite).  Many different types of CNTs (different sizes, multiple 
nested CNTs like in a Russian Doll…) can be synthesized. 

 
Here we consider a truss structure build out of CNT elements.  We will consider a particular 
geometry of a CNT as shown on the next page.  Below you will find some relevant 
information about the material and the geometry of CNTs: 
 • Young’s modulus (a measure of stiffness), E = 2  TPa 

• Bond strength of a single covalent C-C bond, Pbond = 3 nN 
• Outside radius of CNT, R0 = 8  Å 

• Area moment of inertia (assuming circular cross-section), πR 4

I =  
4

• Critical buckling load for a simply supported column (which we had applied earlier to 

our truss members), EIπ 2

Pcrit = L2 , where I  is the area moment of inertia, and L  is 

the length of the member. 
                                                 
* Richard Feynman (Professor at Caltech and Nobel Laureate) is often considered the founding father of 
nanoscience and nanotechnology.  In a famous speech in 1959 he first articulated the possibility of controlling 
matter at atomistic and molecular scale and utilizing this for technological applications 
(http://www.rpi.edu/dept/materials/COURSES/NANO/shaw/Page2.html

Figure by MIT OpenCourseWare.

).  Over the past decades, many advances 
have been made in this field, among others, a new form of carbon has been discovered, arranged in a tube-like 
structure, referred to as ‘carbon nanotubes’.  Some of Feynman’s visions have become a reality, while many aspects 
still remain a research topic.  Eric Drexler, an alumnus of MIT, is a pioneer in the implementation of such ideas and 
was maybe the first ‘nanoengineer’.   
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• Both triangles defined in the nano-truss are isosceles, with side lengths L = 10  nm 
• Loads applied on the nano-truss, P = 20  nN 

 
For this problem, perform the following tasks: 
 

a. Compute the axial forces in each member of the nano-truss. 
b. For the given geometry, material, properties, and loading condition, determine the 

robustness for each member (hint: consider a range of possible failure modes for each 
member).  Derive all material parameters from the information given above.   

c. Given the analysis in part (b), what could be a critical condition to be optimized to 
ensure optimal utilization of the material?  Outline several steps towards that goal, 
e.g. changes of geometry, the structure of the CNT and others.   

 

 

 

 
A selection of  views of the carbon nano tube (CNT) that is used to build the truss structure. 

Images generated in Center of Computational Science web application, University of Kentucky, 
https://www.ccs.uky.edu/~ernst/carbontubes/structure.html (you could use this tool to create 

your own CNT structures!) 
 

 
 

Sketch of the nano-truss. All members have the same length.  The CNTs are connected by 
molecular structures that represent frictionless joints.  
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3. Limit Load Below a Circular Foundation:  Sketch (b) shows a soil continuum below a 
circular foundation of radius R, subjected to the foundation load P. We want to evaluate the 
maximum load the soil substrate can support.  
 
Throughout this exercise (parts (a) and (b)), we make the following simplifying assumptions: 
 

- All contacts are frictionless. 
- The weight of the soil is neglected. 
- We adopt cylindrical coordinates of basis (er er err , θ , z ), see sketch. 
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Figures for Problem 3. a Triaxial test experiment (top) 
b Soil continuum below a circular foundation (bottom).  
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a. Triaxial Test: In order to characterize the soil behavior, it is common engineering 
practice to core a cylindrical sample of radius R  and height H . The sample is brought 
into a lab, where they are subjected to the so-called triaxial test. The test consists of 
placing the cylindrical specimen between two rigid plates of a material testing machine 
(see figure). The lower surface z = H  is fixed. The upper plateau ( z = 0 ) exerts a 

r rvertical force Fext = Pez (with P > 0 ) on the specimen surface. In addition to the vertical 
force, a pressure p is exerted on the cylinder wall. Both P  and p  are increased until the 
failure is reached. Throughout this exercise (parts (a) and (b)) we assume P > πpR 2 . 
 

i. Statically Admissible Stress Field: For the triaxial test, specify precisely the 
conditions that statically admissible stress fields need to satisfy. Among all possible 
statically admissible stress fields, determine one that is constant

 

 in the sample 
(Reminder: use cylinder coordinates). 

ii. Mohr-Stress-Plane: In the (σ ,τ )  Mohr stress plane, display the chosen constant 
stress field. In both the Mohr plane and the material plane, determine the surface 
and the corresponding stress vector, where the shear stress is maximum. 

iii. Mohr-Coulomb material: The triaxial tests reveal that the material obeys a Mohr-
Coulomb strength criterion, defined by the cohesion c  and the friction angle ϕ . 
Display the strength criterion in the Mohr-stress plane. Determine the relationship 
that links P  and p  when the material reaches the strength limit. In both Mohr 
plane and material space, determine the orientation of the surface(s) of the sample 
where the material reaches the strength limit. 

 
b. From the Triaxial Test to the Limit Load of a Circular Foundation: With the strength 

values in hands, we turn to the circular foundation problem. For purpose of analysis, we 
divide the substrate in two domains Ω1  and Ω2 , whose interface is situated at r = R . 
i. Statically Admissible Stress Field: In both domains we assume constant stress fields, 

of the form: 
 

σ ( )i = a (i )er er (i )r
r ⊗ r + b eθ ⊗ er + (i )erθ c z ⊗ erz  

 
 where a ( )1 ,b ( )1 ,c ( )1  and a (2) ,b (2) ,c (2)  are six constants which you need to determine so 

that the stress field is statically admissible everywhere in Ω =Ω1 +Ω2 . Hint: For 
domain Ω1  (which is situated below the foundation), you may want to consider the 
triaxial stress field from part (a). Then check how to extend this stress field into Ω2 . 

ii. Mohr-Stress-Plane: Display the stress fields of  Ω1  and Ω2  in the Mohr-stress plane. 
iii. Mohr-Coulomb material: In the Mohr-Stress plane display the Mohr-Coulomb 

criterion. For the two domains, determine the stress vector components ( )σ ,τ  where 
the material reaches the strength criterion. On this basis, determine the maximum load 
P  the soil substrate can support without violating neither equilibrium nor Mohr-
Coulomb strength criterion. Determine the orientation of the surfaces, e.g. the angle 
relative to vertical, where the material reaches the strength criterion. 


