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Internal Forces  and Moments 
3.1 Internal Forces in Members of a Truss 
Structure 

We are ready to start talking business, to buy a loaf of bread. Up until now we 

have focused on the rudimentary basics of the language; the vocabulary of force, 

moment, couple and the syntax of static equilibrium of an isolated particle or 

extended body. This has been an abstract discourse for the most part. We want 

now to start speaking about “extended bodies” as structural members, as the 

building blocks of truss structures, frame structures, shafts and columns and the 

like. We want to be go beyond questions about forces and moments required to 

satisfy equilibrium and ask “...When will this structure break? Will it carry the 

prescribed loading?” 

We will discover that, with our current language skills, we can only answer 

questions of this sort for one type of structure, the truss structure, and then only 

for a subset of all possible truss structures. To go further we will need to broaden 

our scope, beyond the requirements of force and moment equilibrium, and analyze 

the deformations and displacements of extended bodies in order to respond to 

questions about load carrying ability regardless of the type and complexity of the 

structure at hand - the subject of a subsequent chapter. Here we will go as far as 

we can go with the vocabulary and rules of syntax at our disposal. After all, the 

requirements of force and moment equilibrium still must be satisfied whatever 

structure we confront. 

A truss structure is designed, fabricated, and assembled such that its members 

carry the loads in tension or compression. More abstractly, a truss structure is 
made up of straight, two-force members, fastened together by frictionless 
pins; all loads are applied at the joints. 

Now, we all know that there is no such thing as a truly frictionless pin; you 

will not find them in a suppliers catalogue. And to require that the loads be 

applied at the joints alone seems a severe restriction. How can we ensure that this 

constraint is abided by in use? 

We can’t and, indeed, frictionless pins do not exist. This is not to say that there 

are not some ways of fastening members together that act more like frictionless pins than 

other ways. 

What does exist inside a truss structure are forces and moments of a quite gen-

eral nature but the forces of tension and compression within the straight members 

are the most important of all if the structure is designed, fabricated, and assem-

bled according to accepted practice. That is, the loads within the members of a 



54           Chapter  3
truss structure may be approximated by those obtained from an analysis of an

abstract representation (as straight, frictionless pinned members, loaded at the

joints alone) of the structure. Indeed, this abstract representation is what serves as

the basis for the design of the truss structure in the first place.

Any member of the structure shown above will, in our abstract mode of imag-

ining, be in either tension or compression – a state of uniaxial loading. Think of

having a pair of special eyeglasses – truss seeing glasses – that, when worn,

enable you to see all members as straight lines joined by frictionless pins and

external forces applied at the joints as vectors. This is how we will usually sketch

the truss structure, as you would see it through such magical glasses.

Now if you look closer and imagine cutting away

one of the members, say with circular cross-section,

you would see something like what’s shown: This

particular member carries its load, F, in tension; The

member is being stretched.

If we continue our imagining, increasing the applied, external loads slowly,

the tension in this member will increase proportionally. Eventually, the member

will fail. Often a structure fails at its joints. We rule out this possibility here, assuming that our joints have

been over-designed. The way in which the member fails, as well as the tensile force at

which it fails, depends upon two things: The cross-sectional area of the member

and the material out of which it is made.

If it is grey cast iron with a cross sectional area of 1.0 in2
, the member will

fracture, break in two, when the tensile force approaches 25,000 lb. If it is made

of aluminum alloy 2024-T4 and its area is 600mm2
it will yield, begin to deform

plastically, when the tensile forces approaches 195,000 Newtons. In either case

there is some magnitude of the tensile force we do not want to exceed if we wish

to avoid failure.

Continue on with the thought experiment: Imagine that we replaced this mem-

ber in our truss structure with another of the same length but twice the cross-sec-

tional area. What tensile load can the member now carry before failure?

In this imaginary world, the tensile force required for failure will be twice

what it was before. In other words, we take the measure of failure for a truss mem-

ber in tension to be the tensile (or compressive) stress in the member where the

stress is defined as the magnitude of the force divided by the cross-sectional area

F

F
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of the member. In this we assume that the force is uniformly distributed over the 

cross-sectional area as shown below. 

= F/A 
F 

σA 

Further on we will take a closer look at how materials fail due to internal 

forces, not just tensile and compressive. For now we take it as an empirical obser-

vation and operational heuristic that to avoid fracture or yielding of a truss mem-

ber we want to keep the tensile or compressive stress in the member below a 

certain value, a value which depends primarily upon the material out of which the 

member is made. (We will explore later on when we are justified taking a failure 

stress in uniaxial compression equal to the failure stress in uniaxial tension.) It 

will also depend upon what conventional practice has fixed for a factor of safety. 

Symbolically, we want 

F A < (F A) failure or σ σ⁄ ⁄	 < failure 

where I have introduced the symbol σ to designate the uniformly distributed stress. 

Exercise 3.1 

If the members of the truss structure of Exercise 2.7 are made of 2024-T4 
Aluminum, hollow tubes of diameter 20.0 mm and wall thickness 2.0 mm, 

estimate the maximum load P you can apply before the structure yields.1 In 

this take θ
A

, θ to be 30o, 60o respectively 
B

D	 D 
P 

FB 

FB 

FA 

A B 

30o30.0°
 60.0° 

FA	

60o 
P 

Rather than picking up where we left off in our analysis of Exercise 2.7., we 

make an alternate isolation, this time of joint, or node D showing the unknown 

member forces directed along the member. By convention, we assume that both 

members are in tension. If the value for a member force comes out to be negative, 

1.	 Another failure mode, other than yielding, is possible: Member AD might buckle. We will attend to this pos-
sibility in the last chapter. 
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we conclude that the member is in compression rather than tension. This is an example 

of a convention often, but not always, adopted in the analysis and design of truss structures. You are free to vio-

late this norm or set up your own but, beware: It is your responsibility to note the difference between your 

method and what we will take as conventional and understood without specification. 

Force equilibrium of this node as particle then provides two scalar equations 

for the two scalar unknown member forces. We have 

–F A ⋅ cos 30o + FB ⋅ cos 60o – P = 0 –F A ⋅ sin 30o –FB ⋅ sin 60o 0 = 

From these, we find that member AD is in compression, carrying a load of (√3/ 

2)P and member BD is in tension, carrying a load P/2. The stress in each member 

is the force divided by the cross-sectional area where I have approximated the area 

× 2 40π 10 6 – A = π ⋅ (20 × 10 3 – ) ⋅ (2 10  3 – )m = × m 2 

of the cross-section of the thin-walled tube as a rectangle whose length is equal to 

the circumference of the tube and width equal to the wall thickness. 

Now the compressive stress in member AD is greater in magnitude than the 

tensile stress in member BD – about 1.7 times greater – thus member AD will 

yield first. This defines the mode of failure. The compressive stress in AD is 

σ = ( 3 2⁄ ) ⋅ P A⁄ 

which we will say becomes excessive if it approaches 80% of the value of the stress at 

which 2024-T4 Aluminum begins to yield in uniaxial tension. The latter is listed as 325 

MegaPascals in the handbooks2. 

We estimate then, that the structure will fail, due to yielding of member AD, 

when 

P	 = (2 ⁄ 3) ⋅ (0.80) ⋅ ( × m ) ⋅ (325 × 106 N m2 ) = 37 700N40π 10 6 – 2 ⁄ , 

*** 

I am going to now alter this structure by adding a third member CD. We might 

expect that this would pick up some of the load, enabling the application of a load 

P greater than that found above before the onset of yielding. We will discover that 

we cannot make this argument using our current language skills. We will find that 

we need new vocabulary and rules of syntax in order to do so. Let us see why. 

2.	 A Pascal is one Newton per Square meter. Mega is10 6. Note well how the dimensions of stress are the same 
as those of pressure, namely, force per unit area. See Chapter 7 for a crude table of failure stress values. 
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Exercise 3.2 

Show that if I add a third member to the structure of Exercise 3.1 connect-
ing node D to ground at C, the equations of static equilibrium do not suffice 
to define the tensile or compressive forces in the three members. 

A 

h 

LAD LBD 

P 

xB 

xC 

C BθA 
θC θB 

D

I isolate the system, starting as I did when I first encountered this structure, 

cutting out the whole structure from its supporting pins at A, B and C. The free 

D 

FA FC 
C B 

FB 

θA 

θB 

θC 

xc 

h 

P 

A 

x 
B 

body diagram above shows the direction of the unknown member forces as along 

the members, a characteristic of this and every truss structure. Force equilibrium 

in the horizontal direction and vertical direction produces two scalar equations: 

–F A ⋅ θAcos FC – ⋅ θCcos + FB ⋅ θBcos – P = 0 

and 

F A ⋅ θAsin FB+ ⋅ θBsin + FC ⋅ θCsin = 0 

At this point I note that the above can be read as two equations in three 

unknowns — the three forces in the members — presuming we are given the 

angles θA, θB, and θC, together with the applied load P. We clearly need another 

equation. 
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Summing moments about A I can write 

xB ⋅ FB ⋅ sin θB + xC ⋅ FC ⋅ sin θC – h P = 0⋅ 

xC = ⋅ cos θA – ⋅ cos θCLAD LCD


where and


xB = LAD ⋅ cos θA + LBD ⋅ cos θB 

and 

h = LAD ⋅ sin θA = LCD ⋅ sin θC = LBD ⋅ sin θB 

I now proceed to try to solve for the unknown member forces in terms of some 

or all of these presumed given geometrical parameters. First I write the distances 

xC = h ⋅ [( cos θA ⁄ sin θA) – (cos θC ⁄ sin θC )] 

x  and x  as and
C B

xB = h ⋅ [( cos θA ⁄ sin θA ) + (cos θB ⁄ sin θB )] 
or 

sin (θC – θA) sin (θA + θB ) xC = h ⋅ -------------------------------- and xB = h ⋅ --------------------------------
sin θA ⋅ sin θC sin θA ⋅ sin θB 

With these, the equation for moment equilibrium about A becomes after substi-

tuting for the x’s and canceling out the common factor h, 

FB ⋅ sin (θA + θB ) + FC ⋅ sin (θC – θA) – P ⋅ sin θA = 0 

It appears, at first glance that we are in good shape, that we have three scalar 

equations – two from force equilibrium, this last from moment equilibrium – 

available to determine the three member forces, F
A

, F and F
C

. We proceed by 
B 

eliminating F
A

, one of our unknowns from the equations of force equilibrium. We 

will then be left with two equations – those we derive from force and moment 

equilibrium – for determining F  and F .
B C

We multiply the equation expressing force equilibrium in the horizontal direc-

tion by the factor sinθ
A

, that expressing force equilibrium in the vertical direction 

by the factor cosθ
A

 then add the two equations and obtain 

B ⋅ ( sin θA ⋅ cos θB + cos θA ⋅ sin θB) + F ⋅ ( sin θC ⋅ cos θA – sin θA ⋅ cos θC ) – P ⋅ sin θA = 0 
C 
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This can be written, using the appropriate trig identities, 

FB ⋅ sin (θA + θB ) + FC ⋅ sin (θC – θA) – P ⋅ sin θA = 0 

which is identical to the equation we obtained from operations on the equation of moment 
equilibrium about A above. This means we are up a creek. The equation of moment equi-

librium gives us no new information we did not already have from the equations of force 

equilibrium. We say that the equation of moment equilibrium is linearly dependent upon 

the latter two equations. We cannot find a unique solution for the member forces. We say 

that this system of equations is linearly dependent. We say that the problem is stati-
cally, or equilibrium, indeterminate. The equations of equilibrium do not suffice to 

enable us to find a unique solution for the unknowns. Once again, the meaning of the word indeter-

minate is best illustrated by the fact that we can find many, many solutions for the member forces that satisfy 

equilibrium. 

This time there are no special tricks, no special effects hidden in subsystems, 

that would enable us to go further. That’s it. We can not solve the problem. Rather, 

we have solved the problem in that we have shown that the equations of equilib-

rium are insufficient to the task. 

Observe 

•	 That the forces in the members might depend upon how well a machinist 

has fabricated the additional member CD. Say he or she made it too short. 

Then, in order to assemble the structure, you are going to have to pull the 

node D down toward point C in order to fasten the new member to the oth-

ers at D and to the ground at C. This will mean that the members will 

experience some tension or compression even when the applied load is 

zero3! We say the structure is preloaded. The magnitudes of the preloads 

will depend upon the extent of the incompatibility of the length of the 

additional member with the distance between point C and D 

•	 We don’t need the third member if the load P never comes close to the fail-

ure load determined in the previous exercise. The third member is redun-
dant. In fact, we could remove any one of the other two members and the 

remaining two would be able to support a load P of some significant mag-

nitude. With three members we have a redundant structure. A redundant 
structure is most often synonymous with a statically indeterminate 
system of equations. 

•	   I could have isolated joint D at the outset and immediately have recog-

nized that only two linearly independent equations of equilibrium are 

available. Moment equilibrium would be identically satisfied since all 

force vectors intersect at a common point, at the node D. 

3.	 This is one reason why no engineering drawing of structural members is complete without the specification 
of tolerances. 
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In the so-called “real world”, some truss structures are designed as redundant 

structures, some not Why you might want one or the other is an interesting ques-

tion. More about this later. 

Statically determinate trusses can be quite complex, fully three-dimensional 

structures. They are important in their own right and we have all that we need to 

determine their member forces— namely, the requirements of static equilibrium. 

Exercise 3.3 

Construct a procedure for calculating the forces in all the members of the 
statically determinate truss shown below. In this take α  = √3 

L 

W 

L 

W 

L 

W 

L 

W 

L 

W 

L 

αL 

1. We begin with an isolation of the entire structure: 

L 
W 

L 
W 

L 
W 

L 
W 

L 
W 

L 
Rx Rx 1 3 5 7 9 

2 4 6 8 

12 

αL 

12
1 

11  

10  

Ry	
Ry

1	 12 

2. Then we determine the reactions at the supports. 

This is not always a necessity, as it is here, but generally it is good practice. 

Note all of the strange little circles and shadings at the support points at the left 

and right ends of the structure. The icon at the left end of the truss is to be read as 

meaning that: 

•	  the joint is frictionless and 

•	 the joint is restrained in both the horizontal and vertical direction, in fact, 

the joint can’t move in any direction. 

The icon at the right shows a frictionless pin at the joint but it itself is sitting 

on more frictionless pins. The latter indicate that the joint is free to move in the 
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horizontal direction. This, in turn, means that the horizontal component of the 

reaction force at this joint, Rx is zero, a fact crucial to the determinancy of the 
12 

problem. The shading below the row of circles indicates that the joint is not free to 

move in the vertical direction. 

From the symmetry of the applied loads, the total load of 5W is shared equally 

at the supports. Hence, the vertical components of the two reaction forces are

 Ry
1
 = Ry

12
 = 5 W/2. 

Both of the horizontal components of the reaction forces at the two supports 

must be zero if one of them is zero. This follows from the requirement of force 

equilibrium applied to our isolation.

 Rx  = Rx  = 0.
1 12

3. Isolate a joint at which but two member forces have yet to be determined and apply the 
equilibrium requirements to determine their values. 

There are but two joints, the two support joints that 

1 

F1,2
qualify for consideration this first pass through the pro-

cedure. I choose to isolate the joint at the left support. θ F1,3
Equilibrium of force of node # 1 in the horizontal and 

vertical direction yields the two scalar equations for the 

two unknown forces in members 1-2 and 1-3. In this we (5/2)W
again assume the members are in tension. A negative 

result will then indicate the member is in compression. 

The proper way to speak of this feature of our isolation is 

to note how “the members in tension pull on the joint”. 

Equilibrium in the x direction and in the y direction then requires: 

F1 2 ⋅ cos θ + F1 3 = 0	 , ⁄F1 2 ⋅ sin θ + (5 2) ⋅ W = 0 , , 

where the tanθ = α   and given α = √3 so sinθ = √3 /2 and cosθ= 1/2. These yield 

F1 2, 5 3⁄( ) W F1 3, ⁄( ) W⋅=⋅ 5 2  3  – = 

The negative sign indicates that member 1-2 is in compression. 

4. Repeat the previous step in the procedure. 

F2,3	
Having found the forces in members 1,2 and 1,3, 

node, or joint, # 3 becomes a candidate for isolation. 

3	 It shows but two unknown member forces intersecting at F1.3 

the node. Node #12 remains a possibility as well. I 

F3,5 choose node #3. Force equilibrium yields 

+ F3 5 = 0 and + F2 3 – W = 0W – F1.3 ,	 , 
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Note how on the isolation I have, according to convention, assumed all mem-

ber forces positive in tension. F
1,3 

acts to the left, pulling on pin # 3. This force 

vector is the equal and opposite, internal reaction to the F
1,3 

shown in the isola-

tion of node # 1. With F
1,3

 = (5/2√3)W we have 

F3 5 = (5 2  3  ⁄ ) ⋅ W and + F2 3 = W , , 

These equations are thus, easily solved, and we go again, choosing either node 

# 2 or # 12 to isolate in the next step. 

5. Stopping rule: Stop when all member forces have been determined. 
This piece of machinery is called the method of joints. Statically determinate 

truss member forces can be produced using other, just as sure-fire, proce-

dures.(See problem 3.15) The main point to note is that all the member forces in a 

truss can be determined from equilibrium conditions alone using a judiciously 

chosen sequence of isolations of the nodes if and only if the truss is statically 

determinate. That’s a circular statement if there ever was one but you get the 

point4. 

3.2 Internal Forces and Moments in Beams 

A beam is a structural element like the truss member but, unlike the latter, it is 

designed, fabricated, and assembled to carry a load in bending 5. In this section 

we will go as far as we can go with our current vocabulary of force, couple, and 

moment and with our requirements of static equilibrium, attempting to explain 

what bending is, how a beam works, and even when it might fail. 

The Cantilever according to Galileo 

You, no doubt, know what a beam is in some sense, at least in some ordinary, 

everyday sense. Beams have been in use for a long time; indeed, there were beams 

before there were two-force members. The figure below shows a seventeenth cen-

tury cantilever beam. It appears in a book written by Galileo, his Dialogue Con-
cerning Two New Sciences. 

4.	  Note how, if I were to add a redundant member connecting node #3 to node #4, I could no longer find the 
forces in the members joined at node #3 (nor those in the members joined at nodes #2 and #5). The problem 
would become equilibrium indeterminate 

5.	 Here is another circular statement illustrating the difficulty encountered in writing a dictionary which must 
necessarily turn in on itself. 
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Galileo wanted to know when 

the cantilever beam would 

break. He asked: What weight, 

hung from the end of the beam 

at C, would cause failure? 

You might wonder about Gali-

leo’s state of mind when he 

posed the question. From the 

looks of the wall it is the latter 

whose failure he should be con-

cerned with, not the beam. No. 

You are reading the figure 

incorrectly; you need to put on 

another special pair of eye-

glasses that filter out the shrub-

bery and the decaying wall and 

allow you to see only a cantile-

ver beam, rigidly attached to a 

rigid support at the end AB. These glasses will also be necessary in what follows, 

so keep them on. 

Galileo had, earlier in his book, dis-

cussed the failure of what we would call a 

bar in uniaxial tension. In particular, he 

claimed and argued that the tensile force F 
σ = F/A

required for failure is proportional to the 

cross sectional area of the bar, just as we 

have done. We called the ratio of force to 

area a “stress”. Galileo did not use our language but he grasped, indeed, might be 

said to have invented the concept, at least with respect to this one very important 

trait – stress as a criterion for failure of a bar in tension. Galileo’s achievement in 

analyzing the cantilever beam under an end load lay in relating the end load at 

failure to the failure load of a bar in uniaxial tension. Of course the bar had to be 

made of the same material. His analysis went as follows: 

He imagined the beam to be an angular lever pivoted at B. The weight, W, was  

suspended at one end of the lever, at the end of the long arm BC. A horizontally 

directed, internal, tensile force - let us call it F - acted along the other shorter, 
AB 

vertical arm of the lever AB. Galileo claimed this force acted at a point half way 

up the lever arm and provided the internal resistance to fracture. 

Look back at Galileo’s figure with your special glasses on. Focus on the beam. 

See now the internal resistance acting along a plane cut through the beam at AB. 

Forget the possibility of the wall loosening up at the root of the cantilever. Take a 

peek ahead at the next more modern figure if you are having trouble seeing the 

internal force resultant acting on the section AB. 
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 For moment equilibrium about the point B one must have 

(h ⁄ 2)F AB = W L⋅ 

where I have set h equal to the height of the beam, AB, and L equal to the length of the 

beam, BC. 

According to Galileo, the beam will fail when the ratio of FAB to the cross sec-

tional area reaches a particular, material specific value6. This ratio is what we 

have called the failure stress in tension. From the above equation we see that, for 

members with the same cross section area, the end load, W, to cause failure of the 

member acting as a cantilever is much less than the load, FAB,which causes failure 

of the member when loaded axially, as a truss member (by the factor of (1/2)h/L). 

A more general result, for beams of rectangular cross section but different 

dimensions, is obtained if we express the end load at failure in terms of the fail-

ure stress in tension, i.e., σfailure : 

1 ⁄W failure = ---
2

(h L) ⋅ bh ⋅ σ failure where σ failure = F AB ⁄ (bh)
failure 

and where I have introduced b for the breadth of the beam. Observe: 

σ
• This is a quite general result. If one has determined the value of the ratio 

failure for a specimen in tension, what we would call the failure stress in a 

tension test, then this one number provides, inserting it into the equation 

above, a way to compute the end load a cantilever beam, of arbitrary 

dimensions h, b and L, will support before failure. 

•	  Galileo has done all of this without drawing an isolation, or free-body 

diagram! 

• He is wrong, precisely because he did not draw an isolation7 . 

To state he was wrong is a bit too strong. As we shall see, his achievement is 

real; he identified the underlying form of beam bending and its resistance to frac-

ture. Let us see how far we can proceed by drawing an isolation and attempting to 

accommodate Galileo’s story. 

A 

B 

L 

h 

D 

FAB WC 

b 

6.	 Galileo mentions wood, glass, and other materials as possibilities. 

7.	 This claim is a bit unfair and philosophically suspect: The language of mechanics was little developed at the 
dawn of the 17th century. “Free body diagram” was not in the vocabulary. 
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I have isolated the cantilever, cutting it at AB away from the rest of the beam 

nested in the wall. Here is where Galileo claims fracture will occur. I have shown 

the weight W at the end of the beam, acting downward. I have neglected the 

weight of the material out of which the beam itself is fabricated. Galileo did the 

same and even described how you could take the weight into account if desired. I 

have shown a force F
AB

, the internal resistance, acting halfway up the distance AB. 

Is this system in equilibrium? No. Force equilibrium is not satisfied and 

moment equilibrium about any other point but B is not satisfied This is a consequence of 

the failure to satisfy force equilibrium. That is why he is wrong. 

On the other hand, we honor his achievement. To see why, let us do our own 

isolation, and see how far we can go using the static equilibrium language skills 

we have learned to date. 

We allow that there may exist at the root of the cantilever, at our cut AB, a  

force, F
V 

and a couple M . We show only a vertical component of the internal 
0

L 

FV 

M0 

W 

reaction force since if there were any horizontal component, force equilibrium in 

the horizontal direction would not be satisfied. I show the couple acting positive 

counter clockwise, i.e., directed out of the plane of the paper. 

Force equilibrium then yields 

FV – W = 0  or  FV = W 

and moment equilibrium 

⋅M0 – W L = 0  or  M0 = WL 

And this is as far as we can go; we can solve for the vertical component of the 

reaction force at the root, F
V
, and for the couple (as we did in a prior exercise), 

M
0
, and that’s it. But notice what has happened: There is no longer any horizontal 

force F
AB

 to compare to the value obtained in a tension test! 

It appears we (and Galileo) are in serious trouble if our intent is to estimate 

when the beam will fail. Indeed, we can go no further.8 This is as far as we can go 

with the requirements of static equilibrium. 

8.	 That is, if our criterion for failure is stated in terms of a maximum tensile (or compressive) stress, we can not 
say when the beam would fail. If our failure criterion was stated in terms of maximum bending moment, we 
could say when the beam would fail.  But this would be a very special rule, applicable only for beams with 
identical cross sections and of the same material. 
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Before pressing further with the beam, we consider another problem, — a truss 

structure much like those cantilevered crane arms you see operating in cities, rais-

ing steel and concrete in the construction of many storied buildings. We pose the 

following problem. 

Exercise 3.4 

Show that truss member AC carries a tensile load of 8W, the diagonal 
member BC a compressive load of √2 W, and member BD a compressive 
load of 7W. Then show that these three forces are equivalent to a vertical 
force of magnitude W and a couple directed counter clockwise of magnitude 
WL. 

L = 8 h 
W 

A C E 

B D 

h 

We could, at this point, embark on a method of joints, working our way from 

the right-most node, from which the weight W is suspended, to the left, node by 

node, until we reach the two nodes at the support pins at the wall. We will not 

adopt that time consuming procedure but take a short cut. We cut the structure 

away from the supports at the wall, just to the right of the points A and B, and con-

struct the isolation shown below: 

L = 8 h 
W 

A C E 

B D 

FAC 

FBD 

FBC 

45 
o 

h 

The diagram shows that I have taken the unknown, member forces to be posi-

tive in tension; F and F
BC 

are shown pulling on node C and F
BD 

pulling on node 
AC 

D according to my usual convention. Force equilibrium in the horizontal and ver-

tical directions respectively gives 

⁄–F AC – ( 2 2) ⋅ FBC – FBD = 0 and –( 2 ⁄ 2)FBC –W = 0 
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while moment equilibrium about point B, taking counter clockwise as positive yields 

⋅ – (8h) ⋅ W = 0h F AC 

Solution produces the required result, namely

 F  = 8W; F = - √2 W; F  = - 7W
AC BC	 BD

The negative sign in the result for F
BC 

means that the internal force is oppo-

sitely directed from what was assumed in drawing the free-body diagram; the 

member is in compression rather than tension. So too for member BD; it is also in 

compression. The three member forces are shown compressive or tensile accord-

ing to the solution, in the isolation below, at the left. In the middle we show a stat-

ically equivalent system, having resolved the compressive force in BC into a 

vertical component, magnitude W, and a horizontal component magnitude W, then 

summing the latter with the horizontal force 7W. On the right we show a statically 

equivalent system acting at the same section, AB – a vertical force of magnitude W 
and a couple of magnitude 8W h= W L directed counter clockwise. 

A C E 

B D 

8 W 

7 W 

√2 W 

45 
o 

A C E 

B D 

8 W 

8W 
W 

A C E 

B D 

W 

WL 

Observe: 

•	   The identity of this truss structure with the cantilever beam of Galileo is 

to be noted, i.e., how the moment of the weight W about the point B is bal-

anced by the couple WL acting at the section AB. The two equal and 

opposite forces of magnitude 8W separated by the distance h = L/8 are 

equivalent to the couple WL. 

•	   The most important member forces, those largest in magnitude, are the 

two members AC and BD. The top member AC is in tension, carrying 8W, 

the bottom member BD in compression, carrying 7W. The load in the 

diagonal member is relatively small in magnitude; it carries 1.4W in com-

pression. 

•	 Note if I were to add more bays to the structure, extending the truss out to 

the right from 8h to 10h, to even 100h, the tension and compression in the 

top and bottom members grow accordingly and approach the same magni-

tude. If L= 100h, then F = 100W, F  = 99W, while the force in the
AC BD
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diagonal member is, as before, 1.4W in compression! Its magnitude rela-

tive to the aforementioned tension and compression becomes less and less. 

We faulted Galileo for not recognizing that there must be a vertical, reaction 

force at the root of the cantilever. We see now that maybe he just ignored it 

because he knew from his (faulty)9analysis that it was small relative to the inter-

nal forces acting normal to the cross section at AB. Here is his achievement: he 

saw that the mechanism responsible for providing resistance to bending within a 

beam is the tension (and compression) of its longitudinal fibers. 

Exercise 3.5 

A force per unit area, a stress σ, acts over the cross section AB as shown 
below. It is horizontally directed and varies with vertical position on AB 
according to 

σ	 y ⋅ y( ) = c yn –(h ⁄ 2) ≤ ≤ (h ⁄ 2) 

In this, c is a constant and n a positive integer.

 If the exponent n is odd show that 

(a) this stress distribution is equivalent to a couple alone (no resultant force), 
and 

(b) the constant c, in terms of the couple, say M0, may be expressed as 

⋅ (c = (n 2 + ) ⋅ M0 ⁄ [2b h  ⁄ 2)n 2 + ] 

y 
σ(y)b∆y 

y 

x 

σ n 

y=+h/2 

y=-h/2 

A 

b 

b (y) = cy

9.	  We see how the question of evaluating Galileo’s work as correct or faulty becomes complex once we move 
beyond the usual text-book, hagiographic citation and try to understand what he actually did using his writ-
ings as a primary source. See Kuhn, THE STRUCTURE OF SCIENTIFIC REVOLUTIONS, for more on the 
distortion of history at the hands of the authors of text-books in science and engineering. 
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First, the resultant force: A  differential element of force, ∆F = σ(y)b∆y acts on 

each differential element of the cross section AB between the limits y = ± h/2. 

Note the dimensions of the quantities on the right: σ is a force per unit area; b a 

length and so too ∆y; their product then is a force alone. The resultant force, F, is  

the sum of all these differential elements of force,  hence 

h ⁄ 2 h ⁄ 2 

F = ∫ σ y d b y( )b y = c yn ⋅ d∫ 
– h ⁄ 2 – h ⁄ 2 

If the exponent n is odd, we are presented with the integral of an odd function, 

- σ(y)= σ(-y), between symmetric limits. The sum, in this case, must be zero. 

Hence the resultant force is zero. 

The resultant moment is obtained by summing up all the differential elements 

of moment due to the differential elements of force. The resultant moment will be 

a couple; indeed, it can be pictured as the sum of the couples due to a differential 

element of force acting at +y and a paired differential element of force, oppositely 

directed, acting at -y. We can write, as long as n is odd 

h ⁄ 2 h ⁄ 2 

M0 = 2 ∫ y ⋅ σ y d b y( )b y = 2 c yn 1 + ⋅ d∫ 
0 0 

Carrying out the integration, we obtain 

2 cb
M0 = ----------------- ⋅ (h ⁄ 2 )n 2 + 

(n 2 + ) 

So c can be expressed in terms of M0 as 

c = (n 2 + ) ⋅ M ⁄ [2 b h ⁄ 2 )n 2 + ]⋅ (0 

as we were asked to show. 

Now we imagine the section AB to be a section at the root of Galileo’s cantile-

ver. We might then, following Galileo, claim that if the maximum value of this 

stress, which is engendered at y= +  h/2, reaches the failure stress in a tension test 

then the cantilever will fail. At the top of the beam the maximum stress expressed 

in terms of M0 is found to be, using our result for c, 

σ(y=h/2 ) = 2 (n 2 + ) ⋅ M ⁄ (bh2 )0 
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Now observe: 

•	 The dimensions are correct: Sigma, a stress, is a force per unit area. The 

dimensions of the right hand side are the same - the ratio of force to length 

squared. 

•	  There are many possible odd values of n each of which will give a differ-

ent value for the maximum stress σ at the top of the beam. The problem, in 

short, is statically indeterminate. We cannot define a unique stress distri-

bution satisfying moment equilibrium nor conclude when the beam will 

fail. 

•	  If we arbitrarily choose n = 1, i.e., a linear distribution of stress across 

the cross section AB, and set M0 = WL, the moment at the root of an end-

loaded cantilever, we find that the maximum stress at y = h/2 is 

σ ⁄ ⁄=	 6 ⋅ (L h) ⋅ (W bh)
max 

•	 Note the factor L/h: As we increase the ratio of length to depth while hold-

ing the cross sectional area, bh, constant — say (L/h) increases from 8 to 

10 or even to 100 — the maximum stress is magnified accordingly. This 

“levering action” of the beam in bending holds for other values of the 

exponent n as well! We must credit Galileo with seeing the cantilever 

beam as an angular lever. Perhaps the deficiency of his analysis is rooted 

in his not being conversant with the concept of couple, just as students 

learning engineering mechanics today, four hundred years later, will err in 

their analyses, unable, or unwilling, to grapple with, and appropriate for 

their own use, the moment due to two, or many pairs of, equal and oppo-

site forces as a thing in itself. 

•	 If we compare this result with what Galileo obtained, identifying σmaximum 

above with σfailure  of the member in tension, we have a factor of 6 where 

Galileo shows a factor of 2. That is, from the last equation, we solve for 

W with σmaximum = σfailure  and find 

1
W failure = ---

6
(h L) ⋅ bh ⋅ σ failure⁄ 

•	 The beam is a redundant structure in the sense that we can take material 

out of the beam and still be left with a coherent and usuable structure. For 

example, we might mill away material, cutting into the sides, the whole 

length of the beam as shown below and still be left with a stable and possi-
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bly more efficient structure —A beam requiring less material, hence less 

cost, yet able to support the design loads. 

Exercise 3.6 

The cross section of an I beam looks like an "I". The top and bottom parts 
of the "I" are called the flanges; the vertical, middle part is called the web. 

If you assume that: top flange 
i) the web carries no load, no normal stress 

ii) a uniformly distributed normal stress is carried webIby the top flange 
bottom flange 

iii) a uniformly distributed normal stress is carried 
by the bottom flange I I beam 
iv) the top and bottom flanges have equal cross sec-
tional areas. 

then show that 

a) the resultant force, acting in the direction of the length of the beam is 
zero only if the stress is tensile in one of the flanges and compressive in the 
other and they are equal in magnitude; 

b) in this case, the resultant moment, about an axis perpendicular to the 
web, is given by 

M0 = h bt ⋅⋅ ( ) σ  

where h is the height of the cross section, b the breadth of the flanges, t 
their thickness. 
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The figure at the right 

shows our I beam. Actu-

ally it is an abstraction of 

an I beam. Our I beam, 
σtop = σ 

y

x 

A 

b 

0 
z 

− σ 
t 

y=+h/2 

with its paper thin web, 

unable to carry any stress, 

would fail immediately.10 

But our abstraction is 

not useless; it is an 

approximation to the way 
σbottom = 

an I beam carries a load in y=-h/2
bending. Furthermore, it 

is a conservative approxi-

mation in the sense that if the web does help carry the load (as it does), then the 

stress levels we obtain from our analysis, our model, should be greater than those 

seen by the flanges in practice. 

In a sense, we are taking advantage of the indeterminacy of the problem — the 

problem of determining the stress distribution over the cross section of a beam in 

terms of the applied loading — to get some estimate of the stresses generated in 

an I beam. What we are asked to show in a) and b) is that the requirements of 

static equilibrium may be satisfied by this assumed stress distribution. (We don’t 

worry at this point, about force equilibrium in the vertical direction). 

The figure shows the top flange in tension and the bottom in compression. 

According to the usual convention, we take a tensile stress as positive, a compres-

sive stress as negative. It should be clear that there is no resultant force in the hor-

izontal direction given the conditions i) through iv). That is, force equilibrium in 

the (negative) x direction yields 

bt btσtop ⋅ ( )  + σbottom ( )  ⋅ = 0  if  σbottom = –σtop 

The resultant moment is not zero. The resultant moment about the 0z axis, 

taking them counter clockwise, is just 

M0 = σtop ⋅ bt ⋅ (h ⁄ 2)–σbottom ⋅ bt ⋅ (h ⁄ 2) = 2σtop ⋅ bt ⋅ (h ⁄ 2) = σ ⋅ bth 

where I have set σtop = σ  and σ bottom = - σ. 

With this result, we can estimate the maximum stresses in the top and bottom 

flanges of an I beam. We can write, if we think of M0 as balancing the end load W 

of our cantilever of length L so that we can set  M0 = WL, and obtain: 

⁄ ⁄σ = (L h) ⋅ (W bt  )max 

This should be compared with results obtained earlier for a beam with a rectan-

gular cross section. 

10. No I beam would be fabricated with the right-angled, sharp, interior corners shown in the figure; besides 
being costly, such features might, depending upon how the beam is loaded,  engender stress concentrations 
— high local stress levels. 
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We can not resolve the indeterminacy of the problem and determine when an I 

beam, or any beam for that matter, will fail until we can pin down just what nor-

mal stress distribution over the cross section is produced by an internal moment. 

For this we must consider the deformation of the beam, how the beam deforms due 

to the internal forces and moments. 

Before going on to that topic, we will find it useful to pursue the behavior of 

beams further and explore how the shear force and bending moment change with 

position along a span. Knowing these internal forces and moments will be prereq-

uisite to evaluating internal stresses acting at any point within a beam. 

Shear Force and Bending Moment in Beams 

Indeed, we will be bold and state straight out, as conjecture informed by our study 

of Galileo’s work, that failure of a beam in bending will be due to an excessive 

bending moment. Our task then, when confronted with a beam, is to determine the 
bending moment distribution that is, how it varies along the span so that we can 

ascertain the section where the maximum bending moment occurs. 

But first, a necessary digression to discuss sign conventions as they apply to 

internal stresses, internal forces, and internal moments. I reconsider the case of a 

bar in uniaxial tension but now allow the internal stress to vary along the bar. A 

uniform, solid bar of rectangular cross section, suspended from above and hanging 

vertically, loaded by its own weight will serve as a vehicle for explanation. 

skyhook 

F(z) 

w(z) = γ Az 

y 

z 

x 

F(z) = γ Azz 

F(z) 

F(z) 

z 

∆z 

F(z) + ∆F 
F(z) = γ Az 

∆w(z) = γ A∆z 

(a) (b) (c) (d) 

The section shown at (a) is a true free body diagram of a portion of the bar: the 

section has length "z", so in that sense it is of arbitrary length. The section expe-

riences a gravitational force acting vertically downward; its magnitude is given by 

the product of the weight density of the section, γ, say in pounds per cubic inch, 

and the volume of the section which, in turn, is equal to the product of the cross 

sectional area, A, and the length, z. At the top of the section, where it has been 

"cut" away from the rest above, an internal, tensile force acts which, if force equi-
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librium is to be satisfied, must be equal to the weight of the section, w(z). By 
convention we say that this force, a tensile force, is positive. 

The section of the bar shown at (b) is not a true free body diagram since it is 

not cut free of all supports (and the force due to gravity, acting on the section, is 

not shown). But what it does show is the "equal and opposite reaction" to the 

force acting internally at the cut section, F(z). 

The section of the bar show at (c) is infinitely thin. It too is in tension. We 

speak of the tensile force at the point of the cut, at the distance z from the free 

end. What at first glance appear to be two forces acting at the section — one 

directed upward, the other downward — are, in fact, one and the same single 

internal force. They are both positive and have the same magnitude. 

To claim that these two oppositely directed forces are the same force can create 

confusion in the minds of those unschooled in the business of equal and opposite 

reactions; but that’s precisely what they are. The best way to avoid confusion is to 

include in the definition of the direction of a positive internal force, some specifi-

cation of the surface upon which the force acts, best fixed by the direction of the 
outward normal to the surface. This we will do. In defining a positive truss mem-

ber force, we say the force is positive if it acts on a surface whose outward point-

ing normal is in the same direction as the force acting on the surface. The force 

shown above is then a positive internal force — a tension. 

The section shown at (d) is a differential section (or element). Here the same 

tensile force acts at z (directed downward) but it is not equal in magnitude to the 

tensile force acting at z+∆z, acting upward at the top of the element. The differ-

ence between the two forces is due to the weight of the element, ∆w(z). 

To establish a convention for the shear force and bending moment internal to a 

beam, we take a similar approach. As an example, we take our now familiar canti-

lever beam an make an isolation of a section of span starting at some arbitrary dis-

tance x out from the root and ending at the right end, at x = L. But instead of an 

end load, we consider the internal forces and moments due to the weight of the 

beam itself. Figure (a) shows the magnitude of the total weight of the section act-

ing vertically downward due to the uniformly distributed load per unit length, γA, 

where γ is the weight density of the material and A the cross-sectional area of the 

beam. 

The section is a true free 

body diagram of a portion of 

MB

x

0 

V

L 
weight = γ A(L-x) 

x

y (a) 

the beam: the section has 

length L-x, so in that sense it 

is of arbitrary length. At the 

left of the section, where it z 

has been "cut" away from the 

rest of the beam which is 

attached to the wall, we show an internal force and (bending) moment at x. We 

take it as a convention, one that we will adhere to throughout the remainder of this 

text, that the shear force and the bending moment are positive as shown. We 
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designate the shear force by V, following tradition, and the bending moment by 

M .
b

Now this particular conven-

tion requires elaboration: First (b) 
V 

MB

MB
MB 

V 

MB(x) MB (x)+∆MB(x) 

V(x)+ 

x

x

x+∆x

∆V(x) 

0

0

0

z 

x

x

y

y 

∆w = γ A∆x 

V(x) 

V 

y 

consider the rest of the cantilever 

beam that we cut away. Figure 

(b) shows the equal and opposite 

reactions to the internal force 

and moment shown on our free 

body diagram in figure (a). (b) is (c) 
not a true free body diagram 

since it is not cut free of all sup-

ports and the force due to gravi- z 
tyis not shown. 

The section of the beam 

shown at (c) is infinitely thin. (d) 
Here, what appears to be two 

forces is in fact one and the same 
x

internal force — the shear force, 

V, acting at the section x. They 
z 

are both positive and have the 

same magnitude. Similarly what 

appears to be two moments is in 

fact one and the same internal 

moment — the bending moment, MB , acting at the position x. 

We show a positive shear force acting on the left face, a face with an outward 

normal pointing in the negative x direction, acting downward in the a negative y 
direction. It’s equal and opposite reaction, the same shear force, is shown acting 

on the right face, a face with an outward normal pointing in the positive x direc-

tion, acting upward in a positive y direction. Our convention can then be stated as 

follows: A positive shear force acts on a positive face in a positive coordinate 
direction or on a negative face in a negative coordinate direction. 

A positive face is short for a face whose outward nor- y 
mal is in a positive coordinate direction. The convention 

for positive bending moment is the same but now the 

direction of the moment is specified according to the right 

MB 
MB 

V 

x
hand rule. We see that on the positive x face, the bending 

moment is positive if it is directed along the positive z 
axis. A positive bending moment acts on a positive face V 

in a positive coordinate direction or on a negative face 
in a negative coordinate direction. Warning: Other textbooks use other conven-

tions. It’s best to indicate your convention on all exercises, including in your 

graphical displays the sketch to the right. 
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Exercise 3.7 

Construct a graph that shows how the bending moment varies with distance 
along the end-loaded, cantilever beam. Construct another that shows how 
the internal, transverse shear force. acting on any transverse section, var-
ies. 

With all of this conventional (a) 

Mb

x

0 

V

L 
W 

y 
apparatus, we can proceed to deter-

mine the shear force and bending 

moment which act internally at the 
z 

section x along the end-loaded can-

tilever beam. In this, we neglect 

the weight of the beam. The load at 

the end, W, is assumed to be much greater. Otherwise, our free body diagram 

looks very much like figure (a) on the previous page: Force equilibrium gives but 

one equation – V – W = 0 

while moment equilibrium, taken about a point 

L 
W 

x

x
Mb

y V 
anywhere along the section at x gives, assuming 

y 
a couple or moment is positive if it tends to 

rotate the isolated body counter clock-0 
wise – Mb – W ⋅ (L – x) = 0 

The shear force is then a constant; it does 

not vary as we move along the beam, while 

V(x) = - W the bending moment varies linearly with 

position along the beam, i.e., 

0 x=L 
x 

V = –W 
- W 

and 

–Mb = –W ⋅ (L x)

M

b
(x) = - W(L - x)


. These two functions are plotted at the 

0 x=L right, along with a sketch of the endloaded x 
cantilever; these are the required construc-

tions. 

- WL Some observations are in order: 

y 
W 

x 

V(x)=-W 
x 

L 
M

b
(x) = - WL +WxWL 

•  The shear force is constant and equal to 

the end load W but it is negative according 

to our convention. 

• The maximum bending moment occurs at 

the root of the cantilever, at x=0; this is 

x 



77 Internal Forces and Moments  
where failure is most likely to occur, as Galileo was keen to see.  It too is nega
-
tive according to our convention.


• The shear force is the negative of the slope of the bending moment distri
-
bution. That is


•  V(x) = - dM
b
(x)/dx 

•  If, instead of isolating a portion of the beam to the right of the station x,

we had isolated the portion to the left of the station x, we could have solved the

problem but we would have had to have first evaluated the reactions at the wall.


• The isolation shown at the right and the application of force and moment

equilibrium produce the same shear force and bending moment distribution as

above.  Note that the reactions shown at the wall, at x=0, are displayed accord
-
ing to their true directions; they can be considered the applied forces for this

alternate, free body diagram.


Exercise 3.8 
w(x) = wo

x 

x x + ∆x 

V + ∆V 

Mb+∆MbMb 

V
wo ∆x 

x=L 

   force/unit length 

Show that for the uniformly loaded, beam simply supported at its ends, the 
following differential relationships among the distributed load w

0
, the 

shear force V(x), and the bending moment M
b
(x), hold true, namely 

V d 
= w0 and Mb – = V 

x x d 

The differential relations among the shear force, 

V(x), the bending moment, M
b
(x) and the distributed 

load w
0 

are obtained from imagining a short, differen-

tial element of the beam of length ∆ x, cut out from the 

beam at some distance x In this particular problem we 

Mb 

V 

y 

V + ∆V 

Mb+∆Mb 

wo

x 

∆x 

x+∆x 

x 

are given a uniformly distributed load. Our derivation, 

however, goes through in the same way if w is not constant but varies with x, the 
0 

distance along the span. The relationship between the shear force and w(x) would 

be the same. 

Such an element is shown above. Note the difference between this differen-
tial element sketched here and the pictures drawn in defining a convention for 
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positive shear force and bending moment: They are alike but they are to be read 

differently. The sketch used in defining our convention shows the internal force 

and moment at a point along the span of the beam; the sketch above and in (d) 

shows how the internal force and moment change over a small, but finite, length of 

span – over a differential element. 
Focusing on the isolation of this differential element of the beam, force equi-

librium requires 

–V w ⋅ ∆x + (V + ∆V ) = 0o 

and moment equilibrium, about the point x, counter clockwise positive, yields 

xMb( ) – w0 ⋅ ∆x ⋅ (∆x ⁄ 2) + (V + ∆V ) ⋅ ∆x + Mb + ∆Mb = 0 

We simplify, divide by ∆ x, let ∆ x approach zero and obtain for the ratios ∆V/∆ 
x and ∆M /∆ x in the limit

b

dV d 
x d 

= w0 and Mb = –V
x d 

as was desired. 

Note how, because the factor ∆ x appears twice in the w
0 

term in the equation 

of moment equilibrium, it drops out upon going to the limit. We say it is second 
order relative to the other leading order terms which contain but a single factor ∆ 
x The latter are leading order after we have canceled out the M

b
, - M terms.

b 

Knowing well the sign convention for positive shear force and bending moment is 

critical to making a correct reading of these differential equations. These general 

equations themselves — again, w could be a function of x, w(x), and our deriva-
0 

tion would remain the same —s can be extremely useful in constucting shear force 

and bending moment distributions.  That’s why I’ve placed a box around them. 

For example we might attempt to construct the shear force and bending 

moment distributions by seeking integrals for these two, first order, differential 

equations. We would obtain, since w0 is a constant 

V x x( ) = w0 ⋅ x + C1 and Mb( ) = w0 ⋅ (x 2 ⁄ 2) + C1 ⋅ x + C2 

But how to evaluate the two constants of integration? To do so we must know 

values for the shear force and bending moment at some x position, or positions, 

along the span. 
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Now, for our particular situation, we must have 

the bending moment vanish at the ends of the beam 

since there they are simply supported — that is, the Mb=0 
supports offer no resistance to rotation hence the 

internal moments at the ends must be zero. This is 

V 

best shown by an isolation in the vicinity of one of 

the two ends. Reaction = wo L/2 
We require, then, that the following two bound-

ary conditions be satisfied, namely 

at x=0, Mb = 0 and at x=L, Mb = 0 

These two yield the following expressions for the two constants of integration, 

C1 and C2. 

C1 = –w0 ⋅ (L ⁄ 2) and C2= 0 

and our results for the shear force and bending moment distributions become: 

V x –( ) = w0 ⋅ (x L  ⁄ 2) 

w0 L
2 

Mb( ) = ------------ ⋅ [( x L)2 – (x L)]x ⁄ ⁄
2 

Unfortunately, this way of determining the shear force and bending moment 

distributions within a beam does not work so well when one is confronted with 

concentrated, point loads or segments of distributed loads. In fact, while it works 

fine for a continuous, distributed load over the full span of a beam, as is the case 

here, evaluating the constants of integration becomes cumbersome in most other 

cases. Why this is so will be explored a bit further on. 

Given this, best practice is to determine the shear force and bending moment 

distributions from an isolation, or sequence of isolations, of portion of the beam. 

The differential relationships then provide a useful check on our work. Here is 

how to proceed: 

We first determine the reactions at the supports at the left and right ends of the 

span. 

x 

L 

w0 
y 

w0L/2 w0L/2 
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Note how I have re-positioned the axis system to take advantage of symme-

try.11 

Symmetry suggests, and a free body diagram of 

the entire beam together with application of force y V 
and moment equilibrium would show, that the hori- Mb 
zontal reactions at the ends are zero and the vertical x 
reactions are the same, namely  w L/2.

0 

We isolate a portion of the beam to y
the right of some arbitrarily chosen sta-

tion x. The choice of this section is not 

quite arbitrary: We made a cut at a posi-

tive x, a practice highly recommended 

to avoid sign confusions when writing 

out expressions for distances along the 

span in applying moment equilibrium. 

L/2 

x 
V 

wo 

Mb 

Below right, we show the same iso- y 
lation but have replaced the load w dis-

0 

tributed over the portion of the span x to  
L/2, by an equivalent system, namely a 

force of magnitude w
0
[(L/2)-x] acting 

downward through a point located mid-

way x to L/2. Applying force equilib-

rium to the isolation at the right yields: 

V 

Mb 

(L/2- x)/2 

(L/2- x) 

wo L/2 

wo (L/2- x) 

wo L/2 

– V x( ) – w0 ⋅ [( L ⁄ 2) – x] + w0 ⋅ (L ⁄ 2) = 0 

while taking moments about the point x, counter clockwise positive, yields 

xMb( ) – w0 ⋅ [( L ⁄ 2) – x][( L ⁄ 2) – x] ⁄ 2 + (w0L ⁄ 2)[( L ⁄ 2) – x]= 0 

11. Note how the loading looks a bit jagged; it is not really a constant,as we move along the beam. While the 
effects of this "smoothing" of the applied load can not really be determined without some analysis which 
allows for the varying load, we note that the bending moment is obtained from an integration, twice over, of 
the distributed load.  Integration is a smoothing operation.  We explore this situation further on. 

x 

x 
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Solution of these yields the shear force and bending moment distributions shown below. 

We show the uniform load distribution as well. 

y 

x 

2M
b
(x) = (w

0
/2)[(L/2)2 - x ] 

x 

x 

L 

wo 

wo L/2 wo L/2V (x) 

- wo L/2 

+wo L/2 

+L/2- L/2 

wo L2/8 

0 

Mb(x) 

Observe: 

•	 How by taking moments about the point x, the shear force does not appear 

in the moment equilibrium equation. The two equations are uncoupled, we  

can solve for M
b
(x) without knowing V. 

•	 These results are the same as obtained from our solution of the differential 

equations. They do not immediately appear to be identical because the "x" 

is measured from a different position. If you make an appropriate change 

of coordinate, the identity will be confirmed. 

•	  Another way to verify their consistency is to see if the differential rela-

tionships, which apply locally at any position x, are satisfied by our more 

recent results. Indeed they are: The slope of the shear force distribution is 

equal to the distributed load w
0
 at any point x. The slope of the bending 

moment distribution is equal to the negative of the shear force V(x). 

•	 The bending moment is zero at both ends of the span. This confirms our 

reading of circles as frictionless pins, unable to transmit a couple. 

2•  The bending moment is a maximum at mid-span. M  = w L /8. Note
b 0

that the shear force is zero at mid-span, again in accord with our differen-

tial relationship12 

•	   Last, but not least, the units check. For example, a bending moment has 

the dimensions FL, force times length; the distributed load has dimensions 

F/L, force per unit length; the product of w and L2 then has the dimen-
0 

sions of a bending moment as we have obtained. 

w(x) = wo 

V(x) = wo x 
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For another look at the use of the differential relationships as aids to construct-

ing shear force and bending moment distributions we consider a second exercise: 

Exercise 3.9 

Construct shear force and bending

moment diagrams for the simply-sup-

y 

L/4 

wo (x)

a 

L/2 L/4 

P

ported beam shown below. How do your

diagrams change as the distance a

approaches zero while, at the same time,
 x 

the resultant of the distributed load,

w

0
(x) remains finite and equal to P?


We start with the limiting case of a con-
y P P 

L/4centrated load acting at the point to the left L/4 
of center span. Two isolations of portions of 

xthe beam to the left are made at some arbi-

trary x – first with x less than L/4, (middle 0 

figure), then in the region L/4<x<3L/4, (bot-

tom figure)– are shown. L 
Symmetry again requires that the verti- P P 

cal reactions are equal and of magnitude P. 

x
P

V 

Mb 

P
x 

V

P 

Mb

 y

y 
Note this remains true when we consider the 

distributed load w
0
(x) centered at x= L/4 as 

x 
long as its resultant is equivalent to the con-

centrated load P. 

Force and moment equilibrium for 

0< x  < L/4 yields 

V x( ) = –P 

and 
x 

x ⋅Mb( ) = P x

while for L/4 < x < 3L/4 we have 

12. One must be very careful in seeking maximum bending moments by seting the shear to zero.  	One of the 
disastrous consequences of studying the differential calculus is that one might think the locus of a maximum 
value of a function is always found by equating the slope of the function to zero. Although true in this prob-
lem, this is not always the case. If the function is discontinuous or if the maximum occurs at a boundary then 
the slope need not vanish yet the function may have its maximum value there. Both of these conditions are 
often encountered in the study of shear force and bending moment distributions within beams. 
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V x( ) = P P– = 0 

and 

Mb x( )  P x⋅= – P x(⋅ – L 4⁄ ) P L  4⁄⋅= 

Now for the x > 3L/4 we could proceed by making a third isolation, setting x > 

3L/4 but rather than pursue that tack, we step back and construct the behavior of 

the shear force and bending moment in this region using less machine-like, but 

just as rigorous language, knowing the behavior at the end points and the differen-

tial relations among shear force, bending moment, and distributed load. 

The distributed load is zero for x>3L/4. Hence the shear force y V 
Mb	

must be a constant. But what constant value? We know that the 

reaction at the right end of the beam is P acting upward. Imag-x 
ining an isolation of a small segment of the beam at x ≈ L, you 

see that the shear force must equal a positive P. I show the con-

vention icon at the right to help you imagine the a true isolation at x=L. 

In the region, 3L/4 < x < L we have, 

then V x( ) = P 
For the bending moment in this 

region we can claim that if the shear 

force is constant, then the bending 0 x 

P	 P 
L

L/4 L/4 

x

 y 

+P 

L

L/4 

L/4 

+PL/4 

L/4 L/4 
x

a 

P P 

moment must be a linear function of x 
with a slope equal to -V , i.e., = -P. The 

bending moment must then have the 

form 

M x +( ) 	= –P ⋅ x C

where C is a constant. But the bending V(x) 

moment at the right end is zero. From this 

we can evaluate C, conclude that the bend- x 

ing moment is a straight line, zero at x=L 0 

and with slope equal to -P, i.e., it has the 

form: Mb( ) = P L  – x) -Px ⋅ ( 

I have also indicated the effect of 

distributing the load P out over a finite 

segment, a of the span, centered at x=L/ 

4. Since the distributed P is equivalent 
Mb(x) 

to a w(x), acting downward as positive, 

then the slope of the shear V must be 

positive according to our differential 

relationship relating the two. The bend-

ing moment too changes, is smoothed 
as a result, its slope, which is equal to -

V, is less for x<L/4 and greater than it was for x>L/4. 
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We see that the effect of distributing a concentrated load is to eliminate the dis-

continuity, the jump, in the shear force at the point where the concentrated load is 

applied. We also see that the discontinuity in the slope of the bending moment dis-

tribution at that point dissolves. 

Now while at first encounter, dealing with functions that jump around can be 

disconcerting, reminiscent of all of that talk in a mathematics class about limits 

and their existence, we will welcome them into our vocabulary. For although we 

know that concentrated loads are as rare as frictionless pins, like frictionless pins, 

they are extremely useful abstractions in engineering practice. You will learn to 

appreciate these rare birds; imagine what your life would be like if you had to 

check out the effect of friction at every joint in a truss or the effect of deviation 

from concentration of every concentrated load P? 

One final exercise on shear force and bending moment in a beam: 

Exercise 3.10 

Estimate the magnitude of the maximum bending moment due to the uniform 
loading of the cantilever beam which is also supported at its end away from 
the wall. 

w(x) = wo

x 

x=L 

wo L

LM0 

L/2 

   force/unit length 

Ro  RL 

We first determine, or try to determine, the reactions at the wall and at the 

roller support at the right end. 

Force and moment equilibrium yield, 

R0 – w0 L + RL = 0 

and 

–M0 – w0(L2 ⁄ 2) + RL ⋅ L = 0 



85 Internal Forces and Moments  
Here moments have been taken about left end, positive counterclockwise. Also, I have 

replaced the uniformly distributed load, w0 with a statically equivalent load equal to its 

resultant and acting at midspan. 

Now these are two equations but there are three unknown reactions, RO, RL, 

MO. The problem is indeterminate, the structure is redundant; we could remove 

the support at the right end and the shelf would still work to hold up the books, 

assuming we do not overload the, now cantilevered, structure. But with the sup-

port at the right in place, life is hard, or at least more complex. 

But wait; all that was asked was an estimate of the maximum bending moment. 

Let us press on; we are not without resources. In fact, our redundant structure 

looks something like the previous exercise involving a uniformly loaded beam 

which was simply supported at both ends. There we found a maximum bending 

moment of woL2/8 which acted at mid span. There! There is an estimate!13 Can we 

do better? Possibly. (See Problem 3.1) 

We leave beam bending for now. We have made considerable progress although 

we have many loose ends scattered about. 

•	 What is the nature of the stress distribution engendered by a bending 

moment? 

•	 How can we do better analyzing indeterminate structures like the one 

above? 

We will return to answer these questions and pick up the loose ends, in Chapter 

8. For now we turn to two quite different structural elements – circular shafts in 

torsion, and thin cylinders under internal or external pressure – to see how far we 

can go with equilibrium alone in our search for criteria to judge, diagnose and 

design structures with integrity. 

13. This is equivalent to setting the resistance to rotation at the wall, on the left, to zero. 
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3.3 Internal Moments in Shafts in Torsion 

By now you get the picture: Structures come in different types, made of different 

elements, each of which must support internal forces and moments. The pin-

ended elements of a truss structure can carry “uni-axial” forces of tension or com-

pression. A beam element supports internal forces and moments - “transverse” 

shear forces and bending moments. (A beam can also support an axial force of 

tension or compression but this kind of action does not interact with the shear 

force and bending moment - unless we allow for relatively large displacements of 

the beam, which we shall do in the last chapter). We call a structure made up of 

beam elements a “frame”. 

Structural elements can also twist about their axis. Think of the drive shaft in 

an automobile transmission. The beam elements of a frame may also experience 

torsion. A shaft in torsion supports an internal moment, a torque, about it’s 

“long” axis of rotation. 
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Exercise 3.11 

Estimate the torque in the shaft RH appearing in the figure below 

This figure, of a human-powered pump, is taken from THE VARIOUS AND 

INGENIOUS MACHINES OF AGOSTINO RAMELLI, a sixteenth century, late 

Renaissance work originally published in Italian and French. 
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We isolate pieces of the 

structure in turn, starting with 

RBy

RAx 

Ftooth 

rN 

W 

rs 

RBx

Drum S

RAy
the drum S upon its shaft at the 

top of the machine, then pro-

ceed to the vertical shaft RH to 

estimate the torque it bears. We 

assume in all of our fabrications 

that the bearings are friction-

less, they can support no torque, 

they provide little resistance to 

rotation.14 

We show the reactions at the 

two bearings as R and R .
A B

Their values are not of interest;

we need only determine the

force acting on the teeth of the wheel N, labeled F

tooth
, in order to reach our goal.


Moment equilibrium about the axis of the shaft yields

Ftooth = W ⋅ (r ⁄ r )x n 

where W is the weight of the water bucket, assumed full of water, r is the radius of the 
S 

drum S, and r the radius of the wheel N out to where the internal force acting between the 
N 

teeth of wheel N and the “rundles” of the “lantern gear” R. 

We now isolate the vertical shaft, rather a top 

section of the vertical shaft, to expose the internal 

torque, which we shall label M . On this we show 

MT 

rR 

FtoothT

the equal and opposite reaction to the tooth force 

acting on the wheel N, using the same symbol Ftooth. 

We let r be the radius of the lantern gear. We 
R 

leave for an end-of-chapter exercise the problem of 

determining the reaction force at the bearing (not 

labeled) and another at the bottom of the shaft. 

Moment equilibrium about the axis of the shaft 

yields 

14. This is an adventurous assumption to make for the sixteenth century but, in the spirit of the Renaissance and 

Neo-platonic times, we will go ahead in this fashion. The drawings that are found in Ramelli’s book are an 
adventure in themselves. Page after page of machinery -  for milling grain, cranes for lifting, machines for 
dragging heavy objects without ruining your back, cofferdams, military screwjacks and hurling engines, as 
well as one hundred and ten plates of water-raising devices like the one shown here - can be read as a celebra-
tion of the rebirth of Western thought, and that rebirth extended to encompass technology. This, in some ways 
excessive display of technique – many of the machines are impractical, drawn only to show off – has its par-
allel in contemporary, professional engineering activity within the academies and universities. Witness the 
excessive production of scholarly articles in the engineering sciences whose titles read like one hundred and 
ten permutations on a single fundamental problem. 
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MT = ⋅ rRFtooth


or, with our expression for Ftooth


MT = W rR ⋅ r ⁄ rN )
( s 

Now for some numbers. I take 60 pounds as an estimate of the weight W. I take 

sixty pounds because I know that a cubic foot of water weighs 62.4 pounds and the 

volume of the bucket looks to be about a cubic foot. I estimate the radius of the 

drum to be r = 1  ft, that of the wheel to be three times bigger, r = 3  ft, and 
S N 

finally the radius of the lantern gear to be r = 1  ft. Putting this all together pro-
R 

duces an estimate of the torque in the shaft of

 M ≈ 20 ft.lb
T 

If Ramelli were to ask, like Galileo, when the shaft HR might fail, he would be 

hard pressed to respond. The reason? Assuming that failure of the shaft is a local, 

or microscopic, phenomenon, he would need to know how the torque M estimated
T 

above is distributed over a cross section of the shaft. The alternative would be to 

test every shaft of a different diameter to determine the torque at which it would 

fail.15 

We too, will not be able to respond at this point. Again we see that the problem 

of determining the stresses engendered by the torque, more specifically, the shear 

stress distribution over a cross section of the shaft, is indeterminate. Still, as we 

did with the beam subject to bending, let us see how far we can go. 

We need, first, to introduce the notion of shear stress. Up to this point we have 

toyed with what is called a normal stress, normal in the sense that it acts perpen-
dicular to a surface, e.g., the tensile or compressive stress in a truss member. A 

shear stress acts parallel to a surface. 

The figure at the right shows a thin-walled MT 
tube loaded in torssion by a torque (or moment) 

MT. The bit cut out of the top of the tube is 

meant to show a shear stress τ, distributed over 

the thickness and acting perpendicular to the t 

radius of the tube. It acts parallel to the surface; 

we say it tends to shear that surface over the one 

below it; the cross section rotates a bit about the 

axis relative to the cross sections below. 

I claim that if the tube is rotationally symmet-

τ 

R 

MTric, that is, its geometry and properties do not 

15. A torque of 20 ft-lb. is not a very big torque. The wooden shaft RH would have to be extremely defective or 
very slender to have a torque of this magnitude cause any problems.  Failure of the shaft is unlikely. On the 
other hand, we might ask another sort of question at this point: What force must the worker erert to raise the 
bucket of water?  Or, how fast must he walk round and round to deliver water at the rate of 200 gallons per 
hour? At this rate, how many horse power must he supply? Failure in this mode is more likely. 
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--------------

change as you move around the axis of the tube, then each bit of surface will look 

the same as that shown in the figure. Furthermore, if we assume that the shear is 

uniformly distributed over the thickness of the tube we can figure out how big the 

shear stress is in terms of the applied torque and the geometry of the tube.16 

The contribution to the torque of an angular segment of arc length R∆θ will be 

τ R∆θ⋅ t⋅ : the element of force 

times the radius 

τ R2∆θ⋅ ⋅ t : the element of torque 
so integrating around the surface of the tube gives a resultant 

2πR2t τ ⋅ which must equal the applied torque, hence τ = 
MT 

2πR2t 
-

Note that the dimensions of shear stress are force per unit area as they should 

be. 

Exercise 3.12 

Show that an equivalent system to the torque M
T 

acting about an axis of a 

solid circular shaft is a shear stress distribution τ(r,θ) which is independent 
of θ but otherwise an arbitrary function of r. 

MT 

r 

τ(r) 

MT 

r 

∆θ 

∆Α 

Three End Views 

We show such an arbitrary shear stress τ , a force per unit area, varying from 

zero at the axis to some maximum value at the outer radius R. We call this a 

monotonically increasing function of r. It need not be so specialized a function but 

we will evaluate one of this kind in what follows. 

We show too a differential element of area ∆ A = (r∆ θ)(∆ r), where polar coor-

dinates are used. We assume rotational symmetry so the shear stress does not 

change as we move around the shaft at the same radius. Again, the stress distribu-

tion is rotationally symmetric, not a function of the polar coordinate θ. With this, 

16. This is reminiscent of our analysis of an I beam. 
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for this distribution to be equivalent to the torque M
T
, we must have, equating 

moments about the axis of the shaft: 

⋅MT = r ⋅ [ τ ∆A]∫

Area 

where the bracketed term is the differential element of force and r is the moment arm of 

each force element about the axis of the shaft. 

Taking account of the rotational symmetry, summing with respect to θ intro-

duces a factor of 2π and we are left with 

r = R 

MT = 2 π τ r( ) ⋅ r 2 rd ∫

r 0 = 

where R is the radius of the shaft. 

This then shows that we can construct one, or many, shear stress distribution(s) 

whose resultant moment about the axis of the cylinder will be equivalent to the 

torque, M
T
. For example, we might take 

( ) = c rnτ r ⋅ 

where n is any integer, carry out the integration to obtain an expression for the constant c 
in terms of the applied torque, MT. This is similar to the way we proceeded with the beam. 

3.4 Thin Cylinder under Pressure 

The members of a truss structures carry the load in tension or compression. A cyl-

inder under pressure behaves similarly in that the most significant internal force is 

a tension or compression. And like the truss, if the cylinder is thin, the problem of 

determining these internal forces is statically determinate, or at least approxi-

mately so. A few judiciously chosen isolations will enable us to estimate the ten-

sile and compressive forces within making use, as always, of the requirements for 

static equilibrium. If, in addition, we assume that these internal forces are uni-

formly distributed over an internal area, we can estimate when the thin cylindrical 

shell might yield or fracture, i.e., we can calculate an internal normal stress. We 

put off an exploration of failure until later. We restrict our attention here to con-

structing estimates of the internal stresses. 

Consider first an isolation that cuts the thin shell with a plane perpendicular to 

the cylinder’s axis. 
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We assume that the cylinder is internally pressur-

ized. In writing equilibrium, we take the axial force 

distributed around the circumference, fa, to be uni-

formly distributed as it must since the problem is 

rotationally symmetric. Note that fa, has dimen-

sions force per unit length. For equilibrium in the 

vertical direction: 

piπR2 
f 
a 

R 
t 

⋅2πR f  = pi ⋅ πR2 
a 

Solving for this distributed, internal force we find 

f = pi ⋅ (R ⁄ 2)a 

If we now assume further that this force per unit length of circumference is 

uniformly distributed over the thickness, t, of the cylinder, akin to the way we 

proceeded on the thin hollow shaft in torsion, we obtain an estimate of the tensile 

stress, a force per unit area of the thin cross section, namely 

Observe that the stress σ can be very much larger than the 
a 

internal pressure if the ratio of thickness to radius is small. 

For a thin shell of the sort used in aerospace vehicles, tank 

trailers, or a can of coke, this ratio may be on the order of 

0.01. The stress then is on the order of 50 times the internal 

pressure. But this is not the maximum internal normal stress! Below is a second isolation, 

this time of a circumferential section. 

σa pi R 2t⁄( )⋅= 

Equilibrium of this isolated body 
t 

requires that 

pi ⋅ (2Rb) = 2b f  θ 

R 

b

pi(2Rb) 
fθ 

where fθ is an internal, again tensile, 

uniformly distributed force per unit 

length acting in the “theta” or hoop 
direction. Note: We do not show the 

pressure and the internal forces acting 

in the axial direction. These are self 

equilibrating in the sense that the ten-

sile forces on one side balance those 

on the other side of the cut a distance b along the cylinder. Note also how, in writing the 

resultant of the internal pressure as a vertical force alone, we have put to use the results of 

section 2.2. 

Solving, we find 

f θ = pi ⋅ R 
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If we again assume that the force per unit length in the axial direction is also 

uniformly distributed over the thickness, we find for the hoop stress 

σθ pi R t⁄( )⋅= 

which is twice as big as what we found for the internal stress acting internally, parallel to 

the shell’s axis. For really thin shells, the hoop stress is critical. 
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Design Exercise 3.1 

Low-end Diving Board 

a 

L 

You are responsible for the design of a complete line of diving boards within a 

firm that markets and sells worldwide. Sketch a rudimentary design of a generic 
board. Before you start, list some performance criteria your product must satisfy. 

Make a list also of those elements of the diving board, taken as a whole system, 

that determine its performance. 

Focusing on the dynamic response of the system, explore how those elements 

might be sized to give your proposed design the right feel. Take into account the 

range of sizes and masses of people that might want to make use of the board. Can 

you set out some criteria that must be met if the performance is to be judged good? 

Construct more alternative designs that would meet your main performance crite-

ria but would do so in different ways. 
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Design Exercise 3.2 

Low-end Shelf Bracket 

A 

B 

Many closets are equipped with a clothes hanger bar that is supported by two 

sheetmetal brackets. The brackets are supported by two fasteners A and B as 

shown that are somehow anchored to the wall material (1/2 inch sheetrock, for 

example. A shelf is then usually place on top of the brackets. There is provision to 

fasten the shelf to the brackets, but this is often not done. When overloaded with 

clothes, long-playing records, stacks of back issues of National Geographic Maga-

zine, or last year’s laundry piled high on the shelf, the system often fails by pull-

out of the upper fastener at A. 

•	 Estimate the pullout force acting at A as a function of the load on the 

clothes bar and shelf load. 

•	 Given that the wall material is weak and the pullout strength at A cannot 

be increased, devise a design change that will avoid this kind of failure in 

this, a typical closet arrangement. 



96 Chapter 3 
3.5 Problems - Internal Forces and Moments 

3.1 Estimate the maximum bending moment within the tip supported, 

uniformly loaded cantilever of chapter exercise 3.10 using the result for a 

uniformly loaded cantilever which is unsupported at the right. Would you expect 

this to be an upper or lower bound on the value obtained from a full analysis of 

the statically indeterminate problem? 

3.2 Consider the truss structure of Exercise 3.3: What if you are interested 

only in the forces acting within the members at midspan. Show that you can 

determine the forces in members 6-8, 6-9 and 7-9 with but a single isolation, after 

you have determined the reactions at the left and right ends. This is called the 
method of sections. 

3.3 Show that for any exponent n in the expression for the normal stress 

distribution of Exercise 3.5, the maximum bending stress is given by 

σ = 2 (n 2 + ) ⋅ M0 ⁄ (bh2 )max 

If M0 is the moment at the root of an end-loaded cantilever (end-load = W) of 

lenght L, then this may be written 

σ ⁄ ⁄= 2 (n 2 + ) ⋅ (L h)(W bh  )max 

hence the normal stress due to bending, for a beam with a rectangular cross section will be 

significantly greater than the average shear stress over the section. 

3.4 Estimate the maximum bending moment in the wood of the clothespin 

shown full size. Where do you think this structure would fail? 

3.5 Construct the shear force and bending moment diagram for Galileo’s 

lever. 

3.6 Construct a shear force and bending moment diagram for the truss of 

Exercise 3.4. Using this, estimate the forces carried by the members of the third 

bay out from the wall, i.e., the bay starting at node E. 

3.7 Construct an expression for the bending moment at the root of the lower 

limbs of a mature maple tree in terms of the girth, length, number of offshoots, 
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etc... whatever you judge important. How does the bending moment vary as you 

go up the tree and the limbs and shoots decrease in size and number (?). 

3.8 A hand-held power drill of 1/4 horsepower begins to grab when its 

rotational speed slows to 120 rpm, that’s revolutions per minute.  Estimate the 

force and couple I must exert on the handle to keep a 1/4 inch drill aligned. 

3.9 Estimate the force Ramelli’s laborer (or is it Ramelli himself?) must push 

with in order to just lift a full bucket of water from the well shown in the figure. 

3.10  Construct the shear force and bending 

moment distribution for the diving board 

shown below. Assuming the board is rigid 

relative to the linear spring at a, show that 
a 

the equivalent stiffness of the system at L, K 
in the expression P  = K∆ where ∆ is the 

deflection under the load, is 

L 
K = k ⋅ (a ⁄ L)2 

where k is the stiffness of the 

linear spring at a. 

3.11 Find the force in the member F 

CD of the structure shown in terms of 

P.  All members, save CF are of equal 

length. In this, use method of joints 

60o 

30oA C E 

B 	 D 

G 
starting from either node B or node G, 

according to your teacher’s 

instructions. 

P

3.12    Find an expression for the internal 

moment and force acting at x, some 

arbitrary distance from the root of the 

x 

B	 cantilever beam. Neglect the weight of the 

beam. 

L 

x 
A What if you now include the weight of the 

beam, say w0 per unit length; how do these 

expressions change? 

P What criteria would you use in order to 

safely neglect the weight of the beam? 
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P 

2L 
L 

60o 

x 

y 

x 
p 

A B 

C 

3.14 Determine the forces acting on 

member DE. How does this system 

differ from that of the previous 

problem? How is it the same? 

B A

 C D

 E F

 G H 

P 

3.13 Find the reactions acting at A and B 

in terms of P and the dimensions shown 

(xp/L). 

Isolate member BC and draw a free body 

diagram which will enable you to deter-

mine the forces acting on this member. 

Find those forces, again in terms of P and 

the dimensions shown. 

Find the force in the horizontal member of 

the structure. 

2L 
L 

60o 

x 

y 

x 
p 

A B 

C 

D E 

P

3.15 Estimate the forces acting in 

members EG, GF, FH in terms of P. In 

this, use but one free body diagram. 

Note: Assume the drawing is to scale and, 

using a scale, introduce the relative dis-

tances you will need, in writing out the 

requirement of moment equilibrium, onto 

your free body diagram. 
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3.16 A simply supported beam of 

length L carries a concentrated load, 

P, at the point shown. 

i) Determine the reactions at the 

supports. 

ii) Draw two free body diagrams, 

isolating a portion of the beam to the 

right of the load, another to the left of 

the load. 

L 

P 

L/4 

y 

x 

x 

y V 
Mb 

iii) Apply force equilibrium and 

find the shear force V as a function of 

x over both domains Plot V(x) 

iv) Apply moment equilibrium and 

find how the bending moment Mb varies with x. Plot Mb(x). 

v) Verify that dMb/dx = -V. 

3.17 A simply supported beam 

(indicated by the rollers at the ends) 

W 

L 

carries a trolley used to lift and transport 
a 

heavy weights around within the shop. The 

trolley is motor powered and can move 

between the ends of the beam. For some 

arbitrary location of the trolley along the 

beam, a, 

i) What are the reactions at the ends of 

the beam? 

ii) Sketch the shear force and bending moment distributions. 

iii) How does the maximum bending moment vary with a; i.e., change as the 

trolley moves from one end to the other? 

3.18  Sketch the shear force and 
LL

L/4 L/4L/4 L/4

bending moment distribution for the 

beam shown at the left. Where does the 

maximum bending moment occur and 

what is its magnitude. 

wwoo
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3.19 A simply supported beam 

of length L carries a uniform load 

per unit length, w0. over a portion 

of the lenght, βL< x < L 
i) Determine the reactions at 

the supports. 

ii) Draw two free body dia-

w0 
βL 

x

L 
grams, isolating portions of the 

beam to the right of the origin. 

Note: include all relevant dimen-

sions as well as known and unknown force and moment components. 

iii) Apply force equilibrium and find the shear force V as a function of x. Plot. 

iv) Apply moment equilibrium and find how the bending moment Mb varies 

with x. Plot. 

v) Verify that dMb/dx = -V within each region. 

3.20 Estimate the maximum bending moment within an olympic sized diving 

board with a person standing at the free end, contemplating her next step. 

3.21  A beam, carrying a uniformly 

distributed load, is suspended by cables 

from the end of a crane (crane not 

shown). The cables are attached to the 

beam at a distance a from the center line 

as shown. Given that 

a = (3/4)S and L = (3/2)S 
i) Determine the tension in the cable AB. 

A

 B

C 

aa

wo 

L L

D	 Express in non-dimensional form, i.e., 

with respect to woS. 
ii) Determine the tension in the cables of 

length L. 

iii) Sketch the beam’s shear force and 

bending moment diagram. Again, non-S S 
dimensionalize. What is the magnitude 

of the maximum bending moment and where does it occur? 

iv) Where should the cables be attached - (a/S = ?) -to minimize the magnitude 

of the maximum bending moment? What is this minimum value? 

v) If a/S is chosen to minimize the magnitude of the maximum bending 

moment, what then is the tension in the cables of length L? Compare with your 

answer to (ii).
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C  D 

aa 

wo

3.22  Where should the supports of 

the uniformly loaded beam shown 

at the left be placed in order to 

minimize the magnitude of the 

maximum bending moment within 

the beam?. I.e, a/L =? 

L L 

3.23  A cantilever beam with a hook at 

the end supports a load P as shown.. The 

C 

A 

L 

P 

x 

x 

y V 
Mb 

B
bending moment at x= 3/4 L is: 

a) positive and equal to P*(L/4) 

b) negative and equal to P*(3L/4) L/4 

c) zero. 

3.24  Sketch the shear force and bending moment distribution for the beam 

shown at the left. Where does the maximum bending moment occur and what is 

its magnitude. 

L/4 L/4

 wo

 L/2

L/4 L/4

 L/2 wo 

3.25 The rigid, weight-less, beam carries a load P at its right end and is 

supported at the left end by two (frictionless pins). What can you say about the 

reactions acting at A and B? E.g., “they are equivalent to...” 

L 

h 

P

 A 

B 
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3.26 In a lab experiment, we subject a strand of pasta to an endload as show in 

the first figure.  The strand undegoes relatively large, transverse displacement. 

The (uncooked) noodle bends more and more until it eventually breaks - usually at 

midspan - into two pieces. 

P 
h 

s

 y(x) 

x 

We want to know what is “going on”, internally, near mid-span, before failure 

in terms of a force and a moment. Complete the free-body diagram begun below, 

recognizing that the resultant force and resultant moment on the isolated body 

must vanish for static equilibrium. 

h
 y 

? 
? What else? 

? 

Force ? 

3.27	 For the truss shown below, 

i) Isolate the full truss structure and replace the applied loads with an equiva-

lent load (no moment) acting at some distance, b, from the left end. What is b? 

ii) Determine the reactions at f and l. 
iii) Find the force in member ch with but a single additional free body dia-

gram. (In this part, make sure you work with the external forces as originally 

given). 

L 

W 

L L L 

W 

L 

W 

L 

αL 

a b c d e 

f g h i j k l 
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3.28	 For the truss shown below, 

i) Isolate the full truss structure and replace the applied loads with an equiva-

lent load (no moment) acting at some distance, b, from the left end. What is b? 

ii) Determine the reactions at f and l. 
iii) Find the force in member ch with but a single additional free body dia-

gram. Compare your result with that obtained in the previous problem. 

W 

2L 

W 

W 

αL 

a c e 

f h j l 

2L 

2L 2L 

2L 

3.29  A crane, like those you encounter around MIT these days, shows a 

variable geometry; the angle θ can vary from zero to almost 90 degrees and, of 

course, the structure can rotate 360 degrees around the vertical, central axis of the 

tower. As θ varies, the angle the heavy duty cable BC makes with the horizontal 

changes and the system of pulley cables connecting C and E change in length. 

5 ft. 

60o 

A

 B

 C

 W

 D 

θ 

250 ft. 

40 ft. 

40 ft 

E 

20 ft. 

Drawing an appropriate isolation, determine both the reaction force at D, where a 
(frictionless) pin connects the truss-beam to the tower, and the force, FBC, in the cable BC 
as functions of W and θ. 

Plot FBC/W as a function of θ. Note: θ = 60 degrees in the configuration shown. 
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