
3/15/2010

1.204 Lecture 12

Greedy/dynamic programming algorithms:

Shortest paths
Shortest paths

Shortest paths in networks

• Shortest path algorithm:
– Builds shortest path tree
– From a root node From a root node
– To all other nodes in the network.

• All shortest path algorithms are labeling algorithms
– Labeling is process of finding:

• Cost from root at each node (its label), and
• Predecessor node on path from root to node

• Algorithm needs two data structures:
– Find arcs out of each node

• Array-based representation of graph itself
– Keep track of candidate nodes to add to shortest path tree

• Candidate list (queue) of nodes as they are:
– Discovered and/or
– Revisited

1

3/15/2010

2

Example

Example

(L b l d) (Label, predecessor)

a b c

1

3

1

2

d

a b c

1

3

1

2
(0, null)

Root

d

3/15/2010

3

Example

(L b l d) d b di d) (Label, predecessor)

Example

(L b l d) (Label, predecessor)

(N(Node b discovered)

a b c

1

3

1

2
(0, null)

Root

(3, a)

d

a b c

1

3

1

2
(0, null)

Root

(3, a)

d

(1, a)

(3, a)

3/15/2010

4

Example

(L b l d) (Label, predecessor)

Example

(L b l d) b i it d) (Label, predecessor)

a b c

1

3

1

2
(0, null)

Root

(3, a) (5, b)

d

(1, a)

(N d(Node b revisited)

a b c

1

3

1

2
(0, null)

Root

(5, b)
(2, d)

d

(1, a)

(3, a) (5, b)

(3, a) (5, b)

3/15/2010

5

Example

(L b l d) (Label, predecessor)

Example

(L b l d) (Label, predecessor)

a b c

1

3

1

2
(0, null)

Root

(2, d) (4, b)

d

(1, a)

a b c

1

3

1

2
(0, null)

Root

(2, d) (4, b)

d

(1, a)
Orange (thick) arcs are
shortest path tree with
distances and predecessors

-

3/15/2010

Types of shortest path algorithms

–	 Label setting. If arc is added to shortest path tree, it is
permanent.

•	 Dijkstra (1959) is standard label setting algorithm.
•	 Fastest for dense networks with average outdense ne orks with av out-degree ~> 30Fastest for tw erage degree 30
•	 Requires heap or sorted arcs

–	 Label correcting. If arc is added to tree, it may be altered
later if better path if found.

•	 Series of algorithms, each faster, depending on how candidate
list is managed. Fastest when out-degree ~< 30

–	 Bellman-Ford (1958). New node discovered always put on back of
candidate list and next node taken from front of list. (Queue)

–	 D’Esopo-Pape (1974). New node put on front of candidate list if it
has been on list before, otherwise on back (‘Sharp labels’)

–	 Bertsekas (1992). New node put on front of candidate list if its
label smaller than current front node, otherwise on back

–	 Hao-Kocur (1992). New node is put on front of list if it has been on
list before. Otherwise it is put on back of list if label > front node
and on front of list if smaller. (‘Sharp labels’)

–	 Previous example was label correcting
• Label setting requires looking at shortest arc at every step

Computational results

CPU times (in milliseconds) on road networks
(HP9000-720 workstation 1992) (HP9000 720 workstation, 1992)

Nodes Arcs Visit Dijkstra Bellman D’Esopo Bertsekas Hao-Kocur

5199 14642 13 98 42 37 21 19

28917 64844 96 1192 590 125 144 104

115812 250808 459 9007 5644 619 789 497

119995 271562 488 13352 7651 708 1183 596

187152 410338 779 27483 15067 1184 1713 926

Times are 300x faster today (hardware- Moore’s Law).
Also, slow implementations run 100x slower (lists, sorts, etc.)

6

3/15/2010

Worst case, average performance

Algorithm Worst case Average case

Label-correcting O(2a)
Bellman-Ford is O(an)

~O(a)

Label-setting O(a2) in simple version
O(a lg n) with heap

O(a lg n) with heap

It takes a real sense of humor to use an O(2n) algorithm
in ‘hard real-time’ applications in telecom, but it works!

Label correctors with an appropriate candidate list data
structure in fact make very few corrections and run fast

Tree (D,P) and list (CL) arrays
Array Definition Description
D Distance

(output)(output)
Current best distance from root to node i

P Predecessor
(output)

Predecessor of node in shortest path (so far) from root
to node i

CL Candidate list
(internal)

List of nodes that are eligible to be added to the
growing shortest path tree. CL[i]=

NEVER_ON_CL if node has never been on CL
ON_CL_BEFORE if node has been on CL before
j if node i is now on CL and j nextj j
END_OF_LIST if node is last on CL

6 1-D arrays for input, output, data structures:
Graph input and data structure: Head, To, Dist
Tree output and data structure: D, P
Candidate list to control algorithm: CL

7

3/15/2010

Label correcting algorithm: Hao-Kocur

•	 Initialize:
–	 P: Shortest path tree= {root}
–	 D: Distance from root to all nodes= “infinity”
–	 CL: Candidate list= {root}, at end of list

•	 At each step:
–	 A node i is removed from front of CL
–	 For each arc ij leaving node i where the distance from

the root to node j is shortened by going via node i, add
node j to CL:

•	 If CL[j] == ON_CL_BEFORE, add j to front of CL
•	 If CL[j] == NEVER_ON_CL:

–	 If D[j] < D[front node on CL], add j to front of CL
–	 Else add j to end of CL

•	 If CL[j] > 0, j is now on CL. Do nothing.
•	 If CL[j] == END_OF_LIST, terminate algorithm

Example

a b c
3 2

a b

d

c

1 1

ii PP DD CLCL

a EMPTY MAXCOST NEVER
b EMPTY MAXCOST NEVER
c EMPTY MAXCOST NEVER
d EMPTY MAXCOST NEVER

8

3/15/2010

Example

(0, a)

a b c
3 2

Root a b

d

c

1 1

Root

first
ii PP DD CLCL

a a 0 END
b EMPTY MAXCOST NEVER
c EMPTY MAXCOST NEVER
d EMPTY MAXCOST NEVER

a end

Example

(0, a) (3, a)

a b c
3 2

Root a b

d

c

1 1

Root

first
ii PP DD CLCL

a a 0 b
b a 3 END
c EMPTY MAXCOST NEVER
d EMPTY MAXCOST NEVER

a b end

9

3/15/2010

Example

(0, a) (3, a)

a b c
3 2

Root a b

d

c

1 1

Root

(1, a) first
ii PP DD CLCL

a a 0 b
b a 3 d
c EMPTY MAXCOST NEVER
d a 1 END

a b d end

Node d on rear because
D[d] > D[first] = D[a]

Example

(0, a) (3, a) (5, b)

a b c
3 2

Root a b

d

c

1 1

Root

(1, a) first
ii PP DD CLCL

a a 0 ON_BEF
b a 3 d
c b 5 END
d a 1 c

a b d c

end

10

3/15/2010

Example
(2, d)

(0, a) (3, a) (5, b)

a b c
3 2

Root a b

d

c

1 1

Root

(1, a) first
ii PP DD CLCL

a a 0 ON_BEF
b d 2 c
c b 5 END
d a 1 b

a b d b

c

endNode b at front because
it was on list before

Example
(2, d) (4, b)

(0, a) (3, a) (5, b)

a b c
3 2

Root a b

d

c

1 1

Root

(1, a) first
ii PP DD CLCL

a a 0 ON_BEF
b d 2 c
c b 4 END
d a 1 ON_BEF

a b d b

c

end

11

3/15/2010

Example
(2, d) (4, b)

(0, a) (3, a) (5, b)

a b c
3 2

Root a b

d

c

1 1

Root

(1, a)
ii PP DD CLCL

a a 0 ON_BEF
b d 2 ON_BEF
c b 4 END
d a 1 ON_BEF

a b d b

c

end

Code, p.1
public class Graph { // Same as before, except add P, D data members

private int to[];

private int dist[];

private int H[];

private int nodes;

private int arcs;

private int[] D; // Distance from root to node.

private int[] P; // Predecessor node on path from root

// Constructor, readData() methods same as before

12

[d] fi d

M
an

agg
e

C
L

Code, p.2
public void shortHK(int root) {

// Constants—could be in Graph as static

final int MAX_COST= Integer.MAX_VALUE/2;

final int EMPTY= Short.MIN_VALUE;

final int NEVER_ON_CL= -1;

final int ON CL BEFORE= -2;final int ON_CL_BEFORE= 2;

final int END_OF_CL= Integer.MAX_VALUE;

D= new int[nodes];

P= new int[nodes];

int[] CL= new int[nodes];

// Initialize

for (int i=0; i < nodes; i++) {

D[i]= MAX_COST;

P[i]= EMPTY;

CL[i]= NEVER_ON_CL; }

D[root]= 0;

CL[root]= END_OF_CL;

int lastOnList= root;

int firstNode= root;

// Continued on next page

Code, p.3
do {

int Dfirst= D[firstNode];

for(int link=head[firstNode]; link<head[firstNode+1]; link++){

int outNode= to[link]; // Loop thru arcs out of node

int DoutNode= Dfirst + dist[link];

if (DoutNode < D[outNode]) { // Do something only if impvt

P[outNode]= firstNode;

D[outNode]= DoutNode;

int CLoutNode= CL[outNode];

if (CLoutNode==NEVER_ON_CL || CLoutNode==ON_CL_BEFORE) {

int CLfirstNode= CL[firstNode];

if (CLfirstNode != END_OF_CL && // Front of CL

(CLoutNode==ON_CL_BEFORE || DoutNode<D[CLfirstNode])){

CL[outNode]= CLfirstNode;

CL[firstNode]= outNode; } CL[firstNode] outNode; }

else { // Back of CL

CL[lastOnList]= outNode;

lastOnList= outNode;

CL[outNode]= END_OF_CL; } } } } // End for loop

int nextCL= CL[firstNode]; // Go to next node

CL[firstNode]= ON_CL_BEFORE;

firstNode= nextCL;

} while (firstNode < END_OF_CL); } } // End do loop

3/15/2010

13

k i ()

-

3/15/2010

Code, p.4
public void print() {

System.out.println("i \tP \tD");
for (int i=0; i < nodes; i++) {

if (P[i] == Short.MIN_VALUE)
System.out.println(i + "\t- \t" + D[i]);

ellse
System.out.println(i + "\t" + P[i] + "\t" + D[i]);

}
}

public static void main(String[] args) {

Graph network= new Graph("src/dataStructures/graph.txt");

System.out.println("\nDEP shortest path, root 0");

network.shortDEP(0);

network.print();

System.out.println("\nHK shortest path, root 0");

network.shortHK(0);

network.print();

System.out.println("\nDijkstra shortest path, root 0");

network.shortDijkstra(0);

network.print();

}

Summary: Label correctors

•	 Shortest path algorithm
–	 22 lines of code, after initialization

•	 Down from 200+ lines 25 years ago for d’Esopo-PapeDown from 200+ lines 25 years ago for d Esopo Pape
–	 One addition operation, otherwise only increment,

compare
–	 3 data structures (queue/candidate list, network, tree) as

arrays
• They control the very simple algorithm very efficiently

–	 Linked list would be too expensive
• Memory allocation in small chunks is very slow

–	 Separate data structures and algorithm would be too
expensive

•	 Method call overhead noticeable in real time algorithms
–	 One preprocessing trick used by Hao-Kocur:

•	 Sort arcs out of node by distance. Get a bit of ‘Dijkstra
effect’

14

3/15/2010

Label setting algorithm: Dijkstra

• Dijkstra labels are permanent
– Once set they do not need to be corrected Once set, they do not need to be corrected

• Greedy algorithm
– Starts at an arbitrary node, which is the root of the tree
– Puts arcs on a heap as they are discovered

•	 Each arc’s distance=
distance to its ‘from node’ from root + arc distance

– The algorithm deletes the top arc from the heap
•	 If the ‘to node’ of the arc is not labeled, the arc becomes part of

the shortest ppath tree
•	 If the ‘to node’ is labeled, its destination node has already been

labeled by a shorter path, and this arc is discarded
– The algorithm terminates when all nodes are labeled

•	 When (nodes -1) arcs have been added to the shortest path tree
•	 Or when the heap is empty (if graph is not connected and all

nodes are not reachable)

Dijkstra code, p.1
public void shortDijkstra(int root) {

final int MAX_COST= Integer.MAX_VALUE/2; // 'Infinite' initial

final int EMPTY= Short.MIN_VALUE; // Flag for no value: -32767

Heap g= new Heap(arcs);

D= new int[nodes]; // Distance from root

P= new int[nodes]; // Predecessor node from root

for (int i=0; i < nodes; i++) { // Initialize all nodes

D[i]= MAX_COST; // Initial label-> infinity

P[i]= EMPTY; // No predecessor on path

}

MSTArc inArc= null;

D[root]= 0; // Root is 0 distance from root

P[root]= 0; // Root is its own predecessor

for (int arc= head[root]; arc< head[root+1]; arc++)

g.insert(new MSTArc(root, to[arc], dist[arc]));

// Continued on next slide

15

3/15/2010

Dijkstra code, p.2

for (int i = 0; i < nodes-1; i++) {

do { // Find arc to add to tree

if (g.isEmpty()) return; // Heap empty; done

inArc= (MSTArc) g.delete();

} while (P[inArc.to]!= EMPTY); // ’To’ can’t be in tree

int inNode= inArc.to; // Node added to tree

P[inNode]= inArc.from; // Predecessor is "from"

D[inNode]= inArc.dist; // Distance from root

// Add arcs to heap from newly added node

for (int arc= head[inNode]; arc< head[inNode+1]; arc++)

g.insert(new MSTArc(inNode, to[arc],g

D[inNode] + dist[arc]));

}

}

// MSTArc class same as in PrimHeap

// print(), main() methods essentially the same

Shortest path algorithm usage

• Quicker to recompute than to retrieve from disk storage
• Label correcting algorithms are fastest for most problems

– If average node degree > about 30, use Dijkstra
– Dijkstra best in a few other special cases

• All pairs shortest path algorithms require a lot of storage
– Usually you don’t need all pairs (you may need many)
– Label correcting algorithm is typically used, in a loop

• Can terminate early if looking for just one O-D path
– Obvious in Dijkstra, requires care in label correctors

• Building blocks:
– Shortest path uses graph, heap, set data structures
– Network equilibrium (future topic) uses shortest path as building block
– Branch and bound can use shortest paths as component, etc.

• Can integrate graphs, shortest paths with GIS (display, pan, zoom)
– Integrate graphs and quadtrees
– Can also integrate address lookups, etc.

16

3/15/2010

Shortest path algorithm usage, p.2

• Neggative edgges ((but no neggative cyycles))
–	 Simple algorithm to convert to all costs> 0

•	 Do one pass with label corrector
•	 If negative cycle found, terminate
•	 Add label difference between origin and destination nodes to

negative arc costs

• Negative cycles
–	 Use label corrector variation to detect
–	 This is a different problem (e.g., arbitrage)!

• Kth shortest path, longest path problems, others
–	 Combinatorial; often use dynamic programming

17

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

