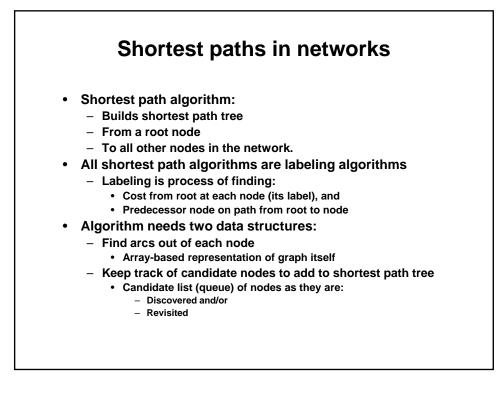
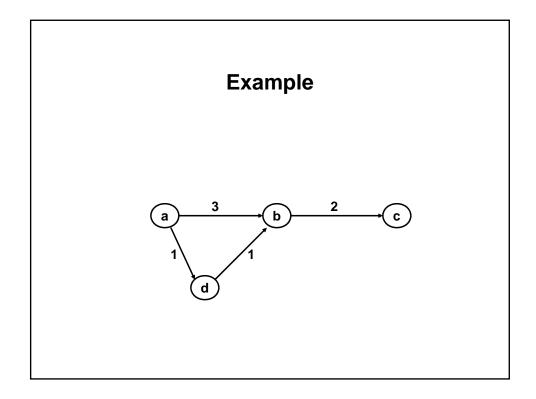
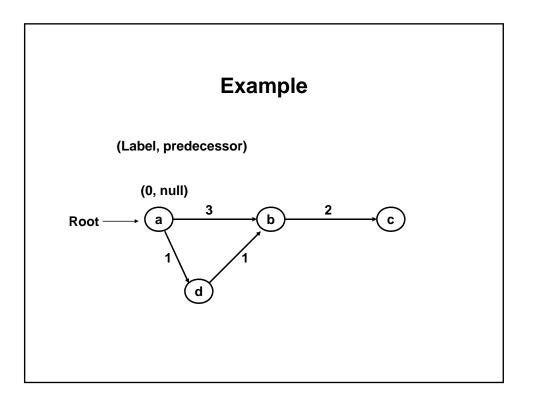
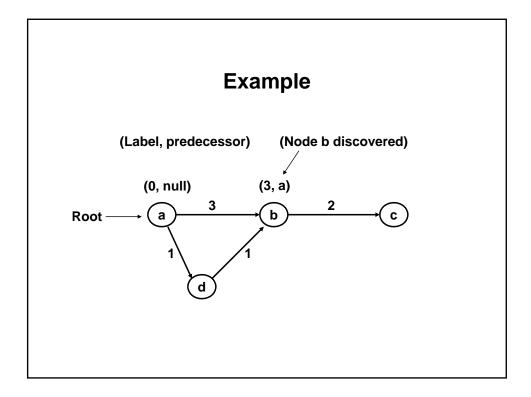
1.204 Lecture 12

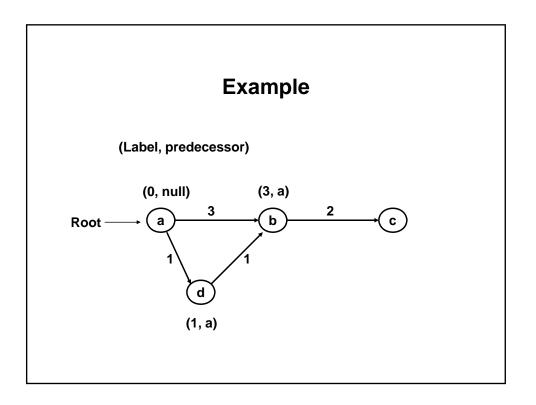
Greedy/dynamic programming algorithms: Shortest paths

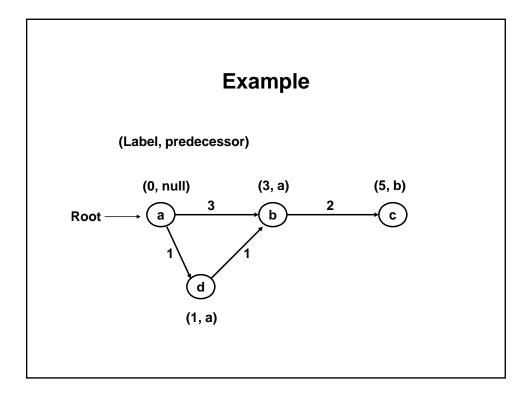


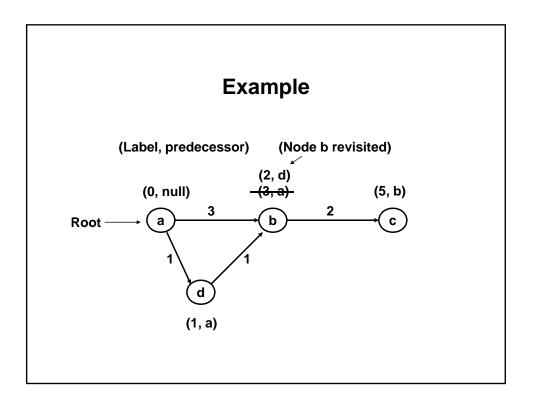


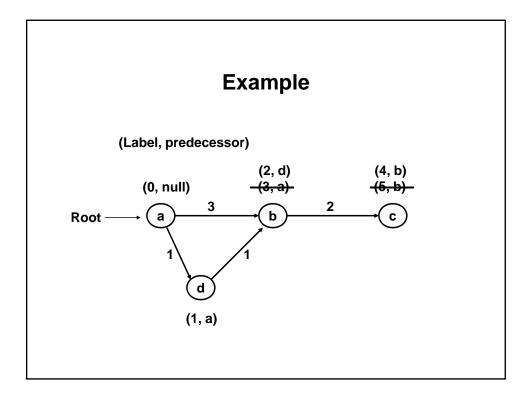


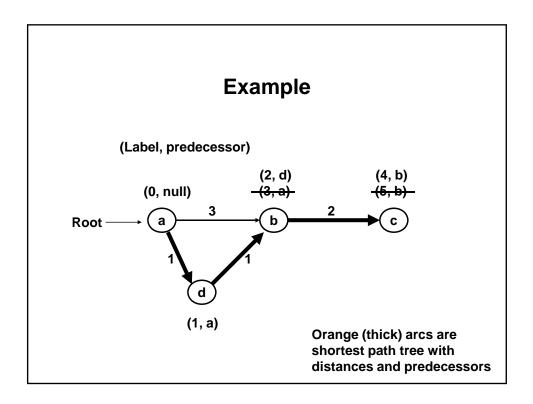


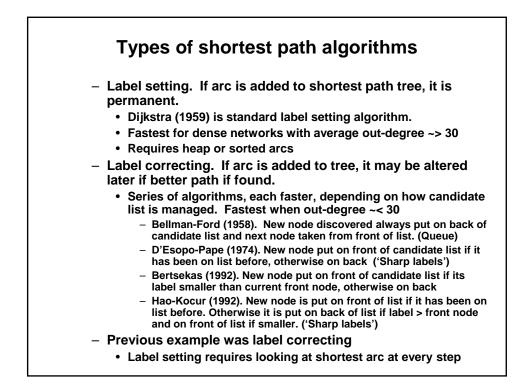










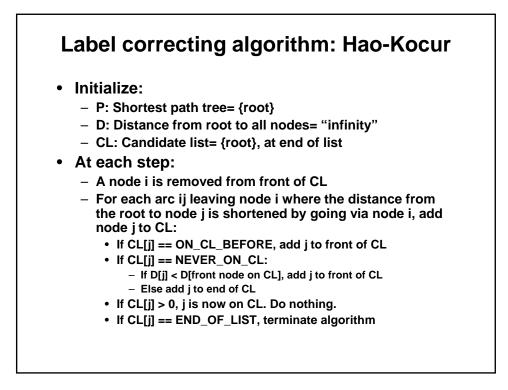


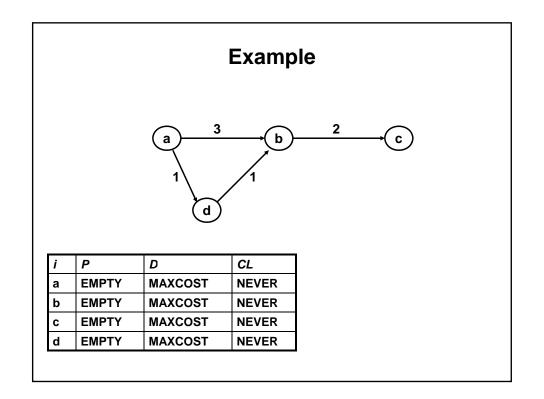
		С	ompu	tationa	al resu	lts	
	(•		s) on road tation, 199		
Nodes	Arcs	Visit	Dijkstra	Bellman	D'Esopo	Bertsekas	Hao-Kocur
5199	14642	13	98	42	37	21	19
28917	64844	96	1192	590	125	144	104
115812	250808	459	9007	5644	619	789	497
119995	271562	488	13352	7651	708	1183	596
187152	410338	779	27483	15067	1184	1713	926

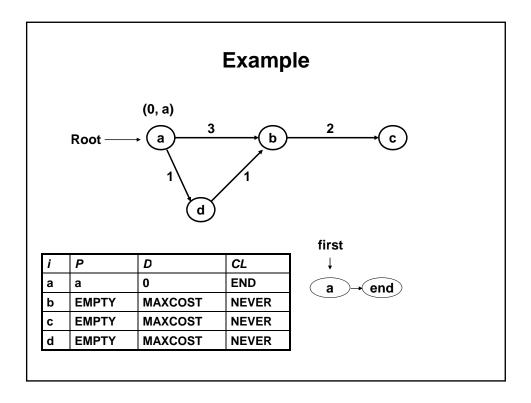
W 0151	case, average perf	ormance
Algorithm	Worst case	Average case
Label-correcting	O(2ª) Bellman-Ford is O(an)	~O(a)
Label-setting	O(a ²) in simple version O(a Ig n) with heap	O(a lg n) with heap

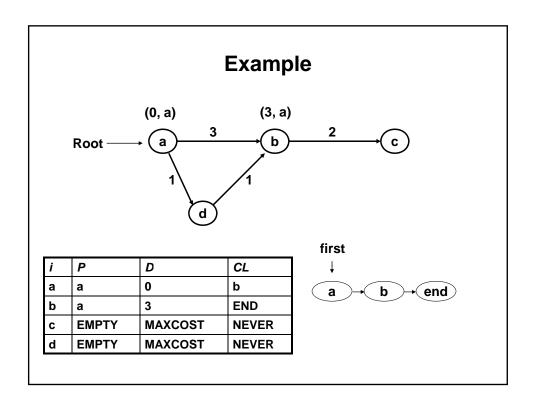
Label correctors with an appropriate candidate list data structure in fact make very few corrections and run fast

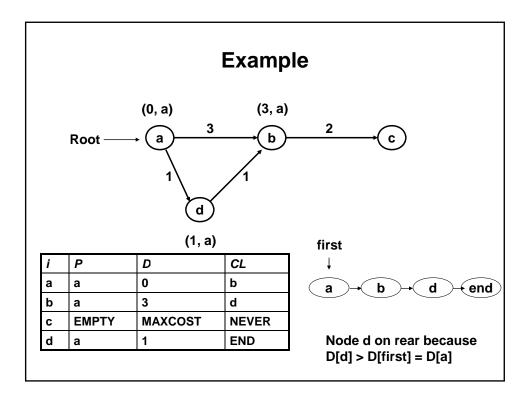
	Tree	(D,P) and list (CL) arrays			
Array	Definition	Description			
D	Distance (output)	Current best distance from root to node i			
Ρ	Predecessor (output)	Predecessor of node in shortest path (so far) from root to node i			
CL	Candidate list (internal)	List of nodes that are eligible to be added to the growing shortest path tree. CL[i]=			
		NEVER_ON_CL if node has never been on CL			
		ON_CL_BEFORE if node has been on CL before			
		j if node i is now on CL and j next			
		END_OF_LIST if node is last on CL			
	<u>6 1-D arra</u>	ays for input, output, data structures:			
	Graph in	put and data structure: Head, To, Dist			
	Tree outp	out and data structure: D, P			
	Candidat	e list to control algorithm: CL			

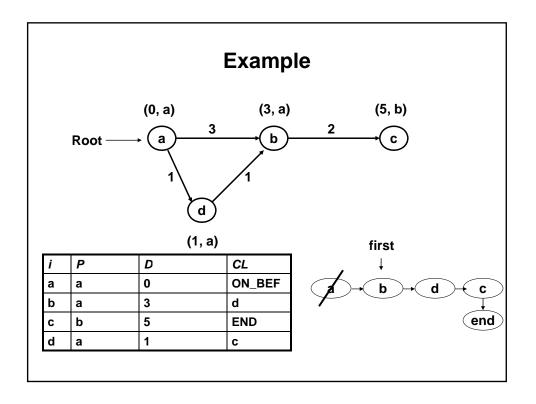


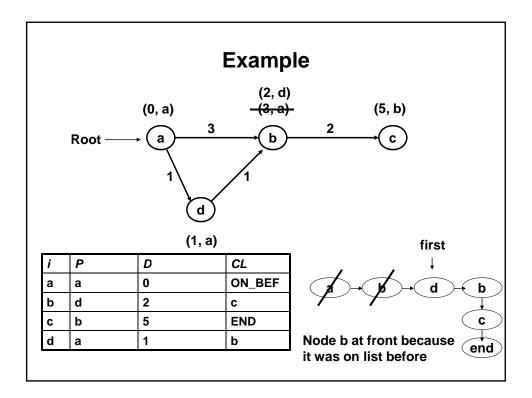


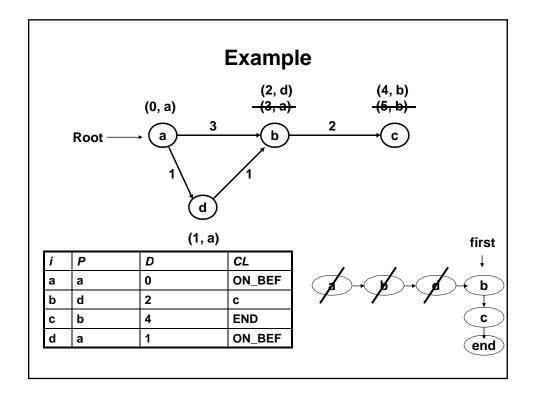


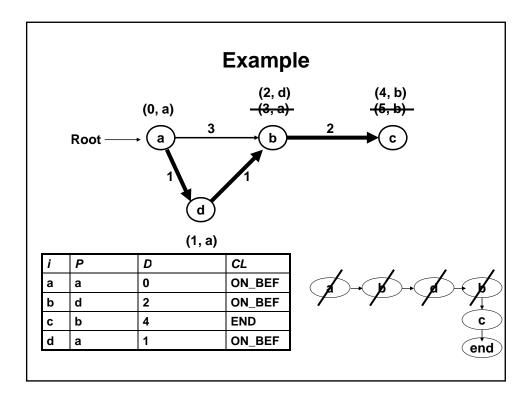




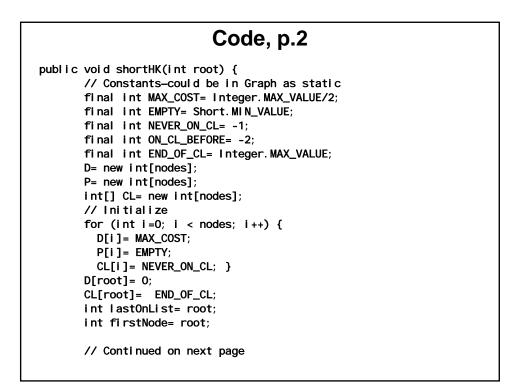


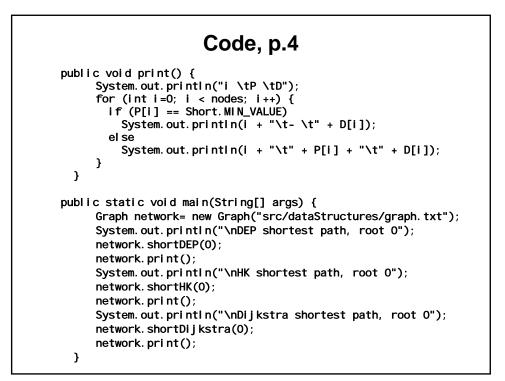


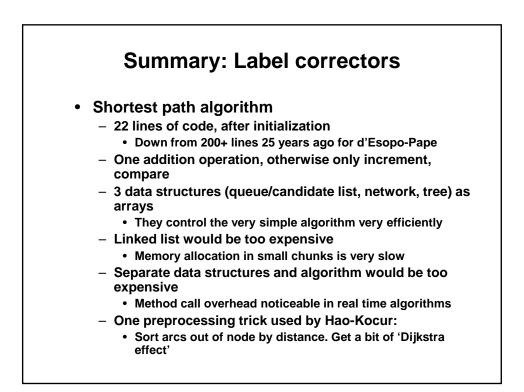




Code, p.1					
<pre>public class Graph { // Same as before, except add P, D data m private int to[]; private int dist[]; private int H[]; private int nodes; private int arcs;</pre>	embers				
private int[] D; // Distance from root to node.					
private int[] P; // Predecessor node on path from root					
// Constructor, readData() methods same as before					



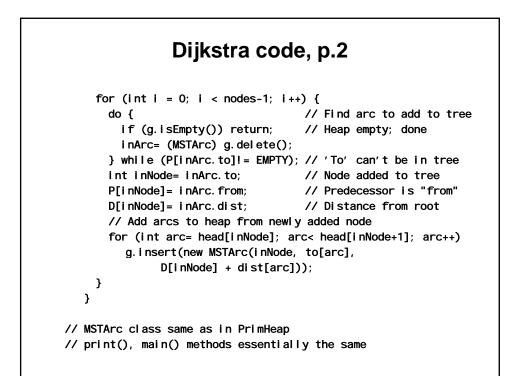


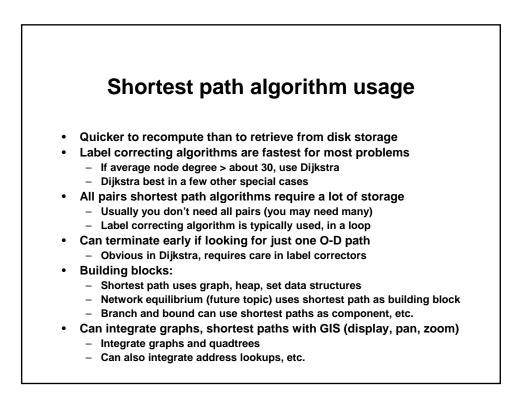


Dijkstra labels are permanent

- Once set, they do not need to be corrected
- Greedy algorithm
 - Starts at an arbitrary node, which is the root of the tree
 - Puts arcs on a heap as they are discovered
 - Each arc's distance=
 - distance to its 'from node' from root + arc distance
 - The algorithm deletes the top arc from the heap
 - If the 'to node' of the arc is not labeled, the arc becomes part of the shortest path tree
 - If the 'to node' is labeled, its destination node has already been labeled by a shorter path, and this arc is discarded
 - The algorithm terminates when all nodes are labeled
 - When (nodes -1) arcs have been added to the shortest path tree
 - Or when the heap is empty (if graph is not connected and all nodes are not reachable)

Dijkstr	a code, p.1
_ 0	nt root) { er.MAX_VALUE/2; // 'Infinite' initial N_VALUE; // Flag for no value: -32767
<pre>D= new int[nodes];</pre>	// Distance from root
P= new int[nodes];	// Predecessor node from root
for (int i=0; i < nodes; i D[i]= MAX_COST; P[i]= EMPTY; }	++) { // Initialize all nodes // Initial label-> infinity // No predecessor on path
MSTArc inArc= null:	
D[root]= 0;	// Root is 0 distance from root
P[root] = 0;	// Root is its own predecessor
for (int arc= head[root]; g.insert(new MSTArc(root	
// Continued on next slide	





Shortest path algorithm usage, p.2

• Negative edges (but no negative cycles)

- Simple algorithm to convert to all costs> 0
 - Do one pass with label corrector
 - If negative cycle found, terminate
 - Add label difference between origin and destination nodes to negative arc costs
- Negative cycles
 - Use label corrector variation to detect
 - This is a different problem (e.g., arbitrage)!
- · Kth shortest path, longest path problems, others
 - Combinatorial; often use dynamic programming

1.204 Computer Algorithms in Systems Engineering Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.