
1.204 Lecture 15

Dynamic programming:

Knapsack
Knapsack

When multistage graphs don’t work

•	 If the resource has many levels:
–	 Largge rangge of ints
–	 Floating point number

•	 Then the multistage graph can’t be constructed
– And label correction is not a sufficient implementation for pruning

•	 We need a set representation instead
–	 Different than our Set data structure, alas

•	 We keep all the elements in the solution at any stage in a
set
–	 W d i t d lWe purge dominated elementts
–	 In a knapsack problem, for example, we purge any element

whose weight is same or higher and its profit is same or lower
than another element

–	 This is how we implement pruning
•	 We still need to structure the problem so that feasibility

constraints keep the size of the sets low

1

2

Knapsack problem

• Problem is modeled as a series of decisions onProblem is modeled as a series of decisions on
whether to include item 1, item 2, item 3, …
– Each item has a profit (benefit) and a weight (cost)
– The knapsack has a maximum weight (cost)
– Each project is either in or out of the knapsack

• No fractional values allowed, as were in the greedy version
• Algorithm

Forward pass: builds sets instead of graph– Forward pass: builds sets instead of graph
• Sets contain cumulative (profit, weight) pairs

– Backward pass: traces sets back from sink to source to
recover solution

– Algorithm can produce solution for all weights less than
or equal to maximum weight in a single run

First example

Item Profit Weight

• Maximum weight= 9

g
0 0 0
1 1 2
2 2 3
3 5 4

g
• Item 0 is a sentinel with 0 weight, 0 profit always

Forward pass: build sets

•	 S(0)= (0,0) S holds cumulative profit, weight
(1,2) S’ is set of items to merge • SS’= (1,2) S is set of items to merge

• S(1)= (0,0) (1,2) S(n) is merged S(n-1) and S’
• S’= (2,3) (3,5)
• S(2)= (0,0) (1,2) (2,3) (3,5)
• S’= (5,4) (6,6) (7,7) (8,9)
• S(3)= (0,0) (1,2) (2,3) (5,4) (6,6) (7,7) (8,9)

– Note that (3,5) is purged when S(3) is constructed
– It is dominated by (5,4): higher profit, lower weight

• If maximum weight were 7, (8,9) pair would not be built
– Infeasibility

Backward pass: get solution
• S(0)= (0,0)	 Item

• S(1)= (0,0) (1,2)	 (1,2)

• S(2)= (0,0) (1,2) (2,3) (3,5)	 (2,3)

• S(3)= (0,0) (1,2) (2,3) (5,4) (6,6) (7,7) (8,9) (5,4)

• Maximum weight: 4 55 6 7 8 96 7 8 9• Maximum weight: 4
– Last pair is optimal (profit, weight) for entire problem

• If pair exists in previous set, item not in solution
• If pair not in previous set, item is in solution

– Subtract item profit, weight and find that pair in previous set
– Continue to trace back to source node

3

4

Second example
Item Profit Weight

0 0 0
1 11 1
2 21 11
3 31 21
4 33 23
5 43 33
6 53 43

• Maximum weight 110
• Item 0 is sentinel

7 55 45
8 65 55

Forward pass: build sets

Traceback uses same logic as before

t t

Algorithm implementation

•	 Follows examples, but there are complications:
– We must keep each set S(i) to trace back the answer

•	 In example 1, if we kept only the final set S(3), the pair (3,5)
would have been purged and we would not be able to trace
back the solution

•	 Pairs dominated by pairs considered later can still be part
of an optimal subsequence in the optimal solution

•	 Storage requirements for all the sets are significant
–	 We discard S’ at each step

– The sets are of varying and difficult-to-predict length
•	 WWe use JJava AArrayLi Lists

–	 O(1) add() method, which is all we use
–	 Allow flexible number of pairs to be stored

–	 The dominance operation is difficult to code
–	 A sentinel, item 0, with 0 profit and 0 weight is needed

• Must be at start of input regardless of input sort order

Algorithm implementation 2

•	 We sort the items in descending profit/weight
order as in the greedy algorithm order, as in the greedy algorithm
–	 Putting ‘good’ items into the solution early usually

allows more pruning to occur
–	 Our dominance operation must handle any item order

•	 An alternative is to sort the items in descending
weight order, if many items’ weights are large
relative to the knapsack maximum weight
– Thi k ll f ibilitThis may make thhe sets smaller bbecause feasibility

constraints eliminate many combinations early
•	 It’s always good to run the greedy version first

–	 If it finds an integer solution, it’s optimal
–	 Even if it doesn’t, its solution will give you insights on

the nature of your problem data, and an approximate
solution in case your DP doesn’t terminate

5

}

Generalizing the set-based dynamic
programming code

•	 We use ints in this implementationWe use ints in this implementation
– Can handle doubles but must use TOLERANCE when

computing dominance to manage numerical error
•	 This implementation can be modified to handle

other dynamic programming problems that can’t
be done with a multistage graph
– E.g., the jjob scheduling dyynamic proggram would keep ag , g p p

triplet (profit, time, deadline) instead of (profit, weight)
–	 The dominance calculation would need to be modified to

match the problem statement
• The changes aren’t as tough as writing it the first time

DPItem
public class DPItem implements Comparable {

int profit;
int weight;

public DPItem(int p, int w) {

profit= p;

weight= w;

}
public boolean equals(Object other) {

DPItem o= (DPItem) other;

if (profit == o.profit && weight == o.weight)

return true;

else

return false;

}

public int compareTo(Object o) {

DPItem other = (DPItem) o;
DPItem other = (DPItem) o;

double ratio= (double) profit/weight;

double otherRatio= (double) other.profit/other.weight;

if (ratio > otherRatio) // Descending sort

return -1;
else if (ratio < otherRatio)

return 1;
else

return 0;
} } // toString() method not shown

6

t

DPSet constructor, extend()
public class DPSet {

ArrayList<DPItem> data; // Flexible capacity, fast add

private static int capacity; // Maximum weight

public DPSet() {

data= new ArrayList<DPItem>();

}

public static void setCapacity(int c) {

capacity= c;

}

public DPSet extend(DPItem other) { // Add item to set

DPSet result= new DPSet();

for (DPItem i: data) {for (DPItem i: data) {

int cumWgt= i.weight + other.weight;

if (cumWgt <= capacity) {

int cumProf= i.profit + other.profit;

result.data.add(new DPItem(cumProf, cumWgt));

}

}

return result;

}

DPSet merge(), p. 1
public DPSet merge(DPSet other) {

// Merges DPSet other with this DPSet, with dominance pruning

// Items in any input sort order wind up in weight order

DPSet result= new DPSet();
();

// Define limits for while loop on DPSet other

int indexOther= 0;

int maxIndexOther= other.data.size()-1;

// Last item profit used for dominance check at end of set

int lastItemProfitOther= other.data.get(maxIndexOther).profit;

// Define limits for while loop on this DPSet

int index= 0;

iint maxII dndex= data.siize()-1;
d t () 1

int lastItemProfit= data.get(maxIndex).profit;

// Continues on next slide, which compares items and other items

7

–

t

Dominance

• If item weigght < other weigght
– Write item to results; it cannot be dominated
– If other profit <= item profit, other is dominated; skip it

• Keep looping over next other items ‘til not dominated
• If item weight= other weight

– If item profit >= other profit
• Skip other item; it’s dominated

– Else skip item; it’s dominated
– Don’t write either of them into solution yetDon t write either of them into solution yet

• Either may be dominated by a previous pair.
• Wait for next comparison

• If other weight < item weight
– Same logic as first case holds

DPSet merge(), p. 2
while (index <= maxIndex || indexOther <= maxIndexOther) {

if (index <= maxIndex && indexOther <= maxIndexOther) { // Both ok

DPItem item= data.get(index);

DPItem otherItem= other.data.get(indexOther);

if ((item.weigght < otherItem.weigght)) { {

result.data.add(item); // Add item; not dominated by other item

index++;

while (otherItem.profit< item.profit && indexOther< maxIndexOther)

otherItem= other.data.get(++indexOther); // Other dominated,skip

} else if (item.weight == otherItem.weight) {

if (item.profit >= otherItem.profit) // Other item dominated

indexOther++;

else

i d // It d i d

}

index++; // Item dominated

} else { // otherItem.weight < item.weight

result.data.add(otherItem); // Add other item, not dominated

indexOther++;

while (item.profit < otherItem.profit && index < maxIndex)

item= data.get(++index); // Item dominated; skip it

} // Continues on next slide, within while loop; end condition

8

if (i fi l fi h)

DPSet merge(), p. 3

// One loop index is already at end. Handle remaining in other set

else if (index > maxIndex) { // Only other items left to consider

while (indexOther <= maxIndexOther) { while (indexOther < maxIndexOther) {

DPItem otherItem= other.data.get(indexOther);

if (otherItem.profit > lastItemProfit)

result.data.add(otherItem);

indexOther++;

}

} else { // indexOther > maxIndexOther. Only items left

while (index <= maxIndex) {

DPItem item= data.get(index);

if (item.profit > lastItemProfitOther)

result.data.add(item);

index++;

}

}

}

return result;

}

DPKnap constructor, knapsack()
public class DPKnap {

private DPItem[] items; // Input items

private int m; // Capacity of knapsack

private DPSet[] sets; // Subsequences, sets

private DPItem[][] solution;; // Solution with opptimal items onlyyp //

public DPKnap(DPItem[] i, int maxCap) {

items= i;

m= maxCap;

sets= new DPSet[items.length];

solution= new DPItem[items.length];

}

bli id k k() {public void knapsack() {

buildSets();

backPath();

outputSolution();

}

9

t

DPKnap buildSets()
private void buildSets() {

DPSet.setCapacity(m);

// Build set 0 with node 0

DPSet s= new DPSet();

//// Add item 0 to set 0. Sentinel w//0 pprofit,, weigght.

s.data.add(items[0]);

sets[0]= s;

// For sets 1 and above

for (int i= 1; i < sets.length; i++) {

// Add item and find cumulative profit, weight pairs

DPSet sNext= s.extend(items[i]);

// Merge, with dominance, with prior set

 (N)s= s.merge(sNext);

// Store new set; needed to trace back solution

sets[i]= s;

}

}

DPKnap backPath() 1
private void backPath() {

int lastSetIndex= sets.length-1; // Start at last set

int lastSetItem= sets[lastSetIndex].data.size()-1;

DPItem lastItem= sets[lastSetIndex].data.get(lastSetItem);

int cumProfit= lastItem.profit;

int cumWeight= lastItem.weight;

DPItem prevItem= lastItem;

for (int i= lastSetIndex-1; i >= 0; i--) {

boolean itemFound= false; // Is item in previous set

int prevSetIndex= i+1;

DPSet currSet= sets[i];

int currItemIndex= currSet.data.size()-1;

for (int j currItemIndex; j > 0; j) {for (int j= currItemIndex; j >= 0; j--) {

DPItem currItem= currSet.data.get(j);

if (currItem.equals(prevItem)) {

itemFound= true;

break;

}

if (currItem.weight < prevItem.weight)

break; // No need to search further

} // Continued on next slide

10

DPKnap backPath() 2

// Pair not found in preceding set; item is in solution

if (!itemFound) {

solution[prevSetIndex]= items[prevSetIndex];

cumProfit -= items[prevSetIndex]] p .profit;;[p

cumWeight -= items[prevSetIndex].weight;

prevItem= new DPItem(cumProfit, cumWeight);

} // else keep searching for prev item in the next set

}

}

DPKnap outputSolution()
private void outputSolution() {

int totalProfit= 0;

int totalWeight= 0;

System.out.println("Items in solution:");

//// Position 0 in solution is sentinel;; don't outpput

for (int i= 1; i < solution.length; i++)

if (solution[i] != null) {

System.out.println(items[i]);

totalProfit += items[i].profit;

totalWeight += items[i].weight;

}

System.out.println("\nProfit: " + totalProfit);

System.out.println("Weight: " + totalWeight);

}

11

t

DPKnap main()
public static void main(String[] args) {

// Sentinel- must be in 0 position even after sort

DPItem[] list= {new DPItem(0, 0),

new DPItem(11, 1),

new DPItem((21,, 11),),

new DPItem(31, 21),

new DPItem(33, 23),

new DPItem(43, 33),

new DPItem(53, 43),

new DPItem(55, 45),

new DPItem(65, 55),

};

Arrays.sort(list, 1, list.length); // Leave sentinel in position 0

i it 110int capacity= 110;

// Assume all item weights <= capacity. Not checked. Discard such

items.

// Assume all item profits > 0. Not checked. Discard such items.

DPKnap knap= new DPKnap(list, capacity);

knap.knapsack();

}

DPKnap example 2 output
Items in solution:

Profit: 11 weight: 1

Profit: 21 weight: 11

Profit: 31 weight: 21

Profit: 43 weigght: 33

Profit: 53 weight: 43

Profit: 159

Weight: 109

12

How a will the set based namic

a c a occas o a o s o a e ob e s

Problem size

• How large a problem will the setproblem -based dynamic large dy
programming approach solve?
–	 It’s highly data-dependent
–	 If you’re lucky, you may solve a problem with hundreds

or even thousands of items
•	 If maximum capacity is low, so feasibility check cuts out

many combinations
•	 If profit/weight sort or other heuristic is effective in pruning

many combinations from the setsmany combinations from the sets
–	 If you’re unlucky, the program will get to about 40 or 50

items and stall (240 is a large number)
•	 You may run out of storage for the sets before your

computation time also becomes excessive

Dynamic programming

•	 Generally used on smaller 0-1 decision problems, often of size 20
to 40, or perhaps 100 items

– Dyynamic pp og rogrammingg occasionallyy works on largeg pproblems
•	 Generally used on ‘integrated problems’ that don’t decompose

into a master problem and subproblems
–	 We will study branch-and-bound methods next, which are better

suited for problems that decompose
•	 With multistage graphs, dynamic programming is a label

correcting shortest path algorithm on a graph (that we don’t
actually need to build)

–	 One source (origin), one sink (destination
–	 Running time depends on the size of the virtual graph Running time depends on the size of the virtual graph

•	 With sets, dynamic programming uses a dominance criterion
–	 Not as efficient as label correction, but a graph can’t be built
–	 More effective pruning by comparing all states in a stage

•	 Keys are to use pruning/dominance and feasibility constraints to
keep the graph or set sizes small

–	 Efficient implementations that don’t store unnecessary data or do
unnecessary calculations can help significantly

13

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

