
1.204 Lecture 16 

Branch and bound:

Method knapsack problem
Method, knapsack problem 

Branch and bound 

•	 Technique for solving mixed (or pure) integer 
programming problems, based on tree search 
–	 Yes/no or 0/1 decision variables, designated xi 
–	 Problem may have continuous, usually linear, variables 
–	 O(2n) complexity 

•	 Relies on upper and lower bounds to limit the number of 
combinations examined while looking for a solution 

•	 Dominance at a distance 
–	 Solutions in one part of tree can dominate other parts of tree 
–	 DP only has local dominance: states in same stage dominatehas local dominance: states in same stage dominateDP only 

•	 Handles master/subproblem framework better than DP 
•	 Same problem size as dynamic programming, perhaps a

little larger: data specific, a few hundred 0/1 variables 
–	 Branch-and-cut is a more sophisticated, related method 

•	 May solve problems with a few thousand 0/1 variables 
•	 Its code and math are complex 
•	 If you need branch-and-cut, use a commercial solver 
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Branch and bound tree
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•	 Every tree node is a problem state 
–	 It is ggenerallyy associated with one 0-1 variable,, sometimes a 

group 
–	 Other 0-1 variables are implicitly defined by the path from the 

root to this node 
•	 We sometimes store all {x} at each node rather than tracing back 

–	 Still other 0-1 variables associated with nodes below the 
current node in the tree have unknown values, since the path 
to those nodes has not been built yet 

Generating tree nodes 

•	 Tree nodes are generated dynamically as theTree nodes are generated dynamically as the 
program progresses 
–	 Live node is node that has been generated but not all of 

its children have been generated yet 
–	 E-node is a live node currently being explored. Its 

children are being generated 
–	 Dead node is a node either: 

•	 Not to be explored further or 
•	 All of whose children have already been explored 
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Managing live tree nodes

• Branch and bound keeps a list  of live nodes. Four 
strategies are used to manage the list:

p

– Depth first search: As soon as child of current E-node is 
generated, the child becomes the new E-node

• Parent becomes E-node only after child’s subtree is explored
• Horowitz and Sahni call this ‘backtracking’

– In the other 3 strategies, the E-node remains the E-node until it 
is dead.  Its children are managed by:

• Breadth first search: Children are put in queue
D h Child t t k• D-search: Children are put on stack

• Least cost search: Children are put on heap
– We use bounding functions (upper and lower bounds) to kill 

live nodes without generating all their children
• Somewhat analogous to pruning in dynamic programming

Knapsack problem (for the last time)
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The xi are 0-1 variables, like the DP and unlike the greedy version



Tree for knapsack problem


x =1 x =0x0=1 x0=0 

x1=1 x1=0 x1=1 x1=0 

x2=0x2=1x2=0x2=1x2=0x2=1x2=0x2=1 

Node numbers are generated but have no problem-specific meaning. 
We will use depth first search. 

Knapsack problem tree 

•	 Left child is always xi= 1 in our formulation 
–	 Right child is always xi= 0 

•	 BBoundi  ding ffuncti  tion tto prune ttree 
–	 At a live node in the tree 

•	 If we can estimate the upper bound (best case) profit at that node, 
and 

•	 If that upper bound is less than the profit of an actual solution 
found already 

•	 Then we don’t need to explore that node 
– We can use the greedy knapsack as our bound function: 

•	 It ggives an upppp  er bound,, since the last item in the knappsack is 
usually fractional 

–	 Greedy algorithms are often good ways to compute upper 
(optimistic) bounds on problems 

•	 E.g., For job scheduling with varying job times, we can cut each 
job into equal length parts and use the greedy job scheduler to get 
an upper bound 

–	 Linear programs that treat the 0-1 variables as continuous
between 0 and 1 are often another good choice 
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Knapsack example (same as DP)
Item Profit Weight

0 0 0
1 11 1
2 21 11
3 31 21
4 33 23
5 43 33
6 53 43
7 55 45
8 65 55

• Maximum weight 110
• Item 0 is sentinel, needed in branch-and-bound too

Source: Horowitz/Sahni previous edition
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Knapsack Solution Tree

Figure by MIT OpenCourseWare.
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Knapsack solution tree


•	 Numbers inside a node are profit and weight at that node, based 
on decisions from root to that node 

•	 Nodes without numbers inside have same values as their parent 
•	 Numbers outside the node are upper bound calculated by greedy

algorithm 
–	 Upper bound for every feasible left child (xi=1) is same as its parent’s 

bound 
–	 Chain of left children in tree is same as greedy solution at that point in 

the tree 
–	 We only recompute the upper bound when we can’t move to a feasible 

left child 
•	 Final profit and final weight (lower bound) are updated at each leaf 

node reached byy galgorithm 
–	 Nodes A, B, C and D in previous slide 
–	 Solution improves at each leaf node reached 
–	 No further leaf nodes reached after D because lower bound (optimal 

value) is sufficient to prune all other tree branches before leaf is 
reached 

•	 By using floor of upper bound at nodes E and F, we avoid 
generating the tree below either node 

–	 Since optimal solution must be integer, we can truncate upper bounds 
–	 By truncating bounds at E and F to 159, we avoid exploring E and F 

KnapsackBB constructor 

public class KnapsackBB { 

private DPItem[] items; // Input list of items 

private int capacity;y;  ////  Max weigght allowed in knappsackp p 

private int[] x;     // Best solution array: item i in if xi=1 

private int[] y;       // Working solution array at current tree node 

private double solutionProfit= -1;  // Profit of best solution so far 

private double currWgt;     // Weight of solution at this tree node 

private double currProfit;  // Profit of solution at this tree node 

private double newWgt;      // Weight of solution from bound() method 

private double newProfit;   // Profit of solution from bound() method 

private int k;   // Level of tree in knapsack() method 

priivate iint partItem; // L l i d()tIt	 f t th d // Level of tree in bbound() method 

public KnapsackBB(DPItem[] i, int c) { 

items= i; 

capacity= c; 

x= new int[items.length]; 

y= new int[items.length]; 

} 
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KnapsackBB knapsack() 
public void knapsack() { 

int n= items.length; // Number of items in problem 

do { // While upper bound < known soln,backtrack 

while (bound() <= solutionProfit) {  

while (k != 0 && y[k] != 1)  // Back up while item k not in sack 

k--; // to find last object in knapsack 

if (k == 0)) // If at root,,  we’re done. Return. ( // 

return; 

y[k]= 0; // Else take k out of soln (R branch) 

currWgt -= items[k].weight;  // Reduce soln wgt by k’s wgt 

currProfit -= items[k].profit;  // Reduce soln profit by k’s prof 

} // Back to while(), recompute bound 

currWgt= newWgt; // Reach here if bound> soln profit 

currProfit= newProfit; // and we may have new soln. 

k= partItem; // Set tree level k to last, possibly 

// ti l it  i d l i// partial item in greedy solution 

if (k == n) { // If we’ve reached leaf node, have 

solutionProfit= currProfit;  // actual soln, not just bound 

System.arraycopy(y, 0, x, 0, y.length);  // Copy soln into array x 

k= n-1; // Back up to prev tree level, which may leave solution 

} else // Else not at leaf, just have bound 

y[k]= 0; // Take last item k out of soln 

} while (true); // Infinite loop til backtrack to k=0 

} 

KnapsackBB bound() 
private double bound() { 

boolean found= false;     // Was bound found?I.e.,is last item partial 

double boundVal= -1;      // Value of upper bound 

int n= items.length;      // Number of items in problem 

newProfit= currProfit;    // Set new prof as current prof at this node 

newWgt= currWgt; 

ppartItem= k+1;; //// Go to next lower level,, tryy to pput in soln 

while (partItem < n && !found) { // More items & haven’t found partial 

if (newWgt + items[partItem].weight <= capacity) {  // If fits 

newWgt += items[partItem].weight; // Update new wgt, prof 

newProfit += items[partItem].profit; // by adding item wgt,prof 

y[partItem]= 1; // Update curr soln to show item k is in it 

} else { // Current item only fits partially 

boundVal= newProfit + (capacity – 

newWgt)*items[partItem].profit/items[partItem].weight; 

f d } // C// Compute upper bound bd b asedd on partitial fitfound= true; } b l fit 

partItem++; // Go to next item and try to put in sack 

} 

if (found) { // If we have fractional soln for last item in sack 

partItem--;      // Back up to prev item, which is fully in sack 

return boundVal; // Return the upper bound 

} else { 

return newProfit;// Return profit including last item 

} } 
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KnapsackBB main() 
public static void main(String[] args) {


// Sentinel- must be in 0 position even after sort

DPItem[] list= {new DPItem(0, 0),


new DPItem(11, 1), 

new DPItem(21, 11), 

new DPItem(31, 21), 

new DPItem((33,, 23),),  

new DPItem(43, 33), 

new DPItem(53, 43), 

new DPItem(55, 45), 

new DPItem(65, 55), 

};

Arrays.sort(list, 1, list.length); // Leave sentinel in 0

int capacity= 110;

// Assume all item weights <= capacity. Not checked. Discard

// A ll it fit  0  N h k d  DiDiscard.
// Assume all item profits > 0. Not checked. d

KnapsackBB knap= new KnapsackBB(list, capacity);

knap.knapsack();

knap.outputSolution();


} 

} 

// main() almost identical to DPKnap. 

// DPItem identical, outputSolution() almost identical to DP code 

Depth first search in branch and bound 

•	 Deppth first search used in combination with breadth first 
search in many problems 
–	 Common strategy is to use depth first search on nodes that 

have not been pruned 
•	 This gets to a leaf node, and a feasible solution, which is a lower 

bound that can be used to prune the tree in conjunction with the 
greedy upper bounds 

– If greedy upper bound < lower bound, prune the tree! 
•	 Once a node has been pruned, breadth first search is used to 

move to a different part of the tree 
–	 Depth first search bounds tend to be very quick to compute if 

you move down the tree sequentially 
•	 E.g. our greedy bound doesn’t need to be recomputed 
•	 Linear program as bounds are often quick too: few simplex pivots 
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Next time 

•	 Breadth first search in branch and bound treesBreadth first search in branch and bound trees 
•	 Fixed facility location problem 

–	 Mixed integer problem 
–	 Uses linear program (LP) as subproblem 
–	 We solve the LP with a shortest path algorithm! 

•	 The depth first search for the knapsack problem 
is mostly pedagogicalis mostly pedagogical 
–	 Sometimes depth first search works well enough for 

your particular problem and data 
–	 Usually you need to be a bit more sophisticated 
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