
1.204 Lecture 16

Branch and bound:

Method knapsack problem
Method, knapsack problem

Branch and bound

•	 Technique for solving mixed (or pure) integer
programming problems, based on tree search
–	 Yes/no or 0/1 decision variables, designated xi
–	 Problem may have continuous, usually linear, variables
–	 O(2n) complexity

•	 Relies on upper and lower bounds to limit the number of
combinations examined while looking for a solution

•	 Dominance at a distance
–	 Solutions in one part of tree can dominate other parts of tree
–	 DP only has local dominance: states in same stage dominatehas local dominance: states in same stage dominateDP only

•	 Handles master/subproblem framework better than DP
•	 Same problem size as dynamic programming, perhaps a

little larger: data specific, a few hundred 0/1 variables
–	 Branch-and-cut is a more sophisticated, related method

•	 May solve problems with a few thousand 0/1 variables
•	 Its code and math are complex
•	 If you need branch-and-cut, use a commercial solver

1

Branch and bound tree

0
21

x0=1 x0=0

43 65

x1=1 x1=0 x1=1 x1=0

x2=0x2=1x2=0x2=1x2=0x2=1x2=0x2=1

•	 Every tree node is a problem state
–	 It is ggenerallyy associated with one 0-1 variable,, sometimes a

group
–	 Other 0-1 variables are implicitly defined by the path from the

root to this node
•	 We sometimes store all {x} at each node rather than tracing back

–	 Still other 0-1 variables associated with nodes below the
current node in the tree have unknown values, since the path
to those nodes has not been built yet

Generating tree nodes

•	 Tree nodes are generated dynamically as theTree nodes are generated dynamically as the
program progresses
–	 Live node is node that has been generated but not all of

its children have been generated yet
–	 E-node is a live node currently being explored. Its

children are being generated
–	 Dead node is a node either:

•	 Not to be explored further or
•	 All of whose children have already been explored

2

3

Managing live tree nodes

• Branch and bound keeps a list of live nodes. Four
strategies are used to manage the list:

p

– Depth first search: As soon as child of current E-node is
generated, the child becomes the new E-node

• Parent becomes E-node only after child’s subtree is explored
• Horowitz and Sahni call this ‘backtracking’

– In the other 3 strategies, the E-node remains the E-node until it
is dead. Its children are managed by:

• Breadth first search: Children are put in queue
D h Child t t k• D-search: Children are put on stack

• Least cost search: Children are put on heap
– We use bounding functions (upper and lower bounds) to kill

live nodes without generating all their children
• Somewhat analogous to pruning in dynamic programming

Knapsack problem (for the last time)

xp ii∑max

x

Mxw
ts

p

i

i
ni

i

i
ni

i

=

≤∑

∑

<≤

<≤

1,0

..

0

0

niwp ii

i

<≤≥≥ 0,0,0
,

The xi are 0-1 variables, like the DP and unlike the greedy version

Tree for knapsack problem

x =1 x =0x0=1 x0=0

x1=1 x1=0 x1=1 x1=0

x2=0x2=1x2=0x2=1x2=0x2=1x2=0x2=1

Node numbers are generated but have no problem-specific meaning.
We will use depth first search.

Knapsack problem tree

•	 Left child is always xi= 1 in our formulation
–	 Right child is always xi= 0

•	 BBoundi ding ffuncti tion tto prune ttree
–	 At a live node in the tree

•	 If we can estimate the upper bound (best case) profit at that node,
and

•	 If that upper bound is less than the profit of an actual solution
found already

•	 Then we don’t need to explore that node
– We can use the greedy knapsack as our bound function:

•	 It ggives an upppp er bound,, since the last item in the knappsack is
usually fractional

–	 Greedy algorithms are often good ways to compute upper
(optimistic) bounds on problems

•	 E.g., For job scheduling with varying job times, we can cut each
job into equal length parts and use the greedy job scheduler to get
an upper bound

–	 Linear programs that treat the 0-1 variables as continuous
between 0 and 1 are often another good choice

4

5

Knapsack example (same as DP)
Item Profit Weight

0 0 0
1 11 1
2 21 11
3 31 21
4 33 23
5 43 33
6 53 43
7 55 45
8 65 55

• Maximum weight 110
• Item 0 is sentinel, needed in branch-and-bound too

Source: Horowitz/Sahni previous edition

A B C D139 149 151 159

Y(8) = 0

Y(7) = 0

Y(6) = 0

Y(5) = 1

Y(4) = 1

Y(5) = 1Y(5) = 0

Y(4) = 0

Y(3) = 1 Y(3) = 0

Y(2) = 1 Y(2) = 0

Y(1) = 1 Y(1) = 0

Y(4) = 0

Y(6) = 1 Y(6) = 1Y(6) = 0 Y(6) = 0

Y(7) = 0

163.81 162 160.18 158 157.63101
151

164.66 161.63 159.79 159.33F
109
159

99
149

66
106

89
139

68
106162.44 157.55 157.11

56
96

35
65160.22 154.88

33
63 E159.76

157.44

155.11

12
32

1
11

164.88

Knapsack Solution Tree

Figure by MIT OpenCourseWare.

t t

Knapsack solution tree

•	 Numbers inside a node are profit and weight at that node, based
on decisions from root to that node

•	 Nodes without numbers inside have same values as their parent
•	 Numbers outside the node are upper bound calculated by greedy

algorithm
–	 Upper bound for every feasible left child (xi=1) is same as its parent’s

bound
–	 Chain of left children in tree is same as greedy solution at that point in

the tree
–	 We only recompute the upper bound when we can’t move to a feasible

left child
•	 Final profit and final weight (lower bound) are updated at each leaf

node reached byy galgorithm
–	 Nodes A, B, C and D in previous slide
–	 Solution improves at each leaf node reached
–	 No further leaf nodes reached after D because lower bound (optimal

value) is sufficient to prune all other tree branches before leaf is
reached

•	 By using floor of upper bound at nodes E and F, we avoid
generating the tree below either node

–	 Since optimal solution must be integer, we can truncate upper bounds
–	 By truncating bounds at E and F to 159, we avoid exploring E and F

KnapsackBB constructor

public class KnapsackBB {

private DPItem[] items; // Input list of items

private int capacity;y; //// Max weigght allowed in knappsackp p

private int[] x; // Best solution array: item i in if xi=1

private int[] y; // Working solution array at current tree node

private double solutionProfit= -1; // Profit of best solution so far

private double currWgt; // Weight of solution at this tree node

private double currProfit; // Profit of solution at this tree node

private double newWgt; // Weight of solution from bound() method

private double newProfit; // Profit of solution from bound() method

private int k; // Level of tree in knapsack() method

priivate iint partItem; // L l i d()tIt	 f t th d // Level of tree in bbound() method

public KnapsackBB(DPItem[] i, int c) {

items= i;

capacity= c;

x= new int[items.length];

y= new int[items.length];

}

6

t

 t t

KnapsackBB knapsack()
public void knapsack() {

int n= items.length; // Number of items in problem

do { // While upper bound < known soln,backtrack

while (bound() <= solutionProfit) {

while (k != 0 && y[k] != 1) // Back up while item k not in sack

k--; // to find last object in knapsack

if (k == 0)) // If at root,, we’re done. Return. (//

return;

y[k]= 0; // Else take k out of soln (R branch)

currWgt -= items[k].weight; // Reduce soln wgt by k’s wgt

currProfit -= items[k].profit; // Reduce soln profit by k’s prof

} // Back to while(), recompute bound

currWgt= newWgt; // Reach here if bound> soln profit

currProfit= newProfit; // and we may have new soln.

k= partItem; // Set tree level k to last, possibly

// ti l it i d l i// partial item in greedy solution

if (k == n) { // If we’ve reached leaf node, have

solutionProfit= currProfit; // actual soln, not just bound

System.arraycopy(y, 0, x, 0, y.length); // Copy soln into array x

k= n-1; // Back up to prev tree level, which may leave solution

} else // Else not at leaf, just have bound

y[k]= 0; // Take last item k out of soln

} while (true); // Infinite loop til backtrack to k=0

}

KnapsackBB bound()
private double bound() {

boolean found= false; // Was bound found?I.e.,is last item partial

double boundVal= -1; // Value of upper bound

int n= items.length; // Number of items in problem

newProfit= currProfit; // Set new prof as current prof at this node

newWgt= currWgt;

ppartItem= k+1;; //// Go to next lower level,, tryy to pput in soln

while (partItem < n && !found) { // More items & haven’t found partial

if (newWgt + items[partItem].weight <= capacity) { // If fits

newWgt += items[partItem].weight; // Update new wgt, prof

newProfit += items[partItem].profit; // by adding item wgt,prof

y[partItem]= 1; // Update curr soln to show item k is in it

} else { // Current item only fits partially

boundVal= newProfit + (capacity –

newWgt)*items[partItem].profit/items[partItem].weight;

f d } // C// Compute upper bound bd b asedd on partitial fitfound= true; } b l fit

partItem++; // Go to next item and try to put in sack

}

if (found) { // If we have fractional soln for last item in sack

partItem--; // Back up to prev item, which is fully in sack

return boundVal; // Return the upper bound

} else {

return newProfit;// Return profit including last item

} }

7

t

KnapsackBB main()
public static void main(String[] args) {

// Sentinel- must be in 0 position even after sort

DPItem[] list= {new DPItem(0, 0),

new DPItem(11, 1),

new DPItem(21, 11),

new DPItem(31, 21),

new DPItem((33,, 23),),

new DPItem(43, 33),

new DPItem(53, 43),

new DPItem(55, 45),

new DPItem(65, 55),

};

Arrays.sort(list, 1, list.length); // Leave sentinel in 0

int capacity= 110;

// Assume all item weights <= capacity. Not checked. Discard

// A ll it fit 0 N h k d DiDiscard.
// Assume all item profits > 0. Not checked. d

KnapsackBB knap= new KnapsackBB(list, capacity);

knap.knapsack();

knap.outputSolution();

}

}

// main() almost identical to DPKnap.

// DPItem identical, outputSolution() almost identical to DP code

Depth first search in branch and bound

•	 Deppth first search used in combination with breadth first
search in many problems
–	 Common strategy is to use depth first search on nodes that

have not been pruned
•	 This gets to a leaf node, and a feasible solution, which is a lower

bound that can be used to prune the tree in conjunction with the
greedy upper bounds

– If greedy upper bound < lower bound, prune the tree!
•	 Once a node has been pruned, breadth first search is used to

move to a different part of the tree
–	 Depth first search bounds tend to be very quick to compute if

you move down the tree sequentially
•	 E.g. our greedy bound doesn’t need to be recomputed
•	 Linear program as bounds are often quick too: few simplex pivots

8

Next time

•	 Breadth first search in branch and bound treesBreadth first search in branch and bound trees
•	 Fixed facility location problem

–	 Mixed integer problem
–	 Uses linear program (LP) as subproblem
–	 We solve the LP with a shortest path algorithm!

•	 The depth first search for the knapsack problem
is mostly pedagogicalis mostly pedagogical
–	 Sometimes depth first search works well enough for

your particular problem and data
–	 Usually you need to be a bit more sophisticated

9

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

