1.224J/ ESD.204J: Airline Crew Scheduling

<u>Outline</u>

Crew Scheduling
Problem Definition

Costs

Set Partitioning Model and Solution
Enhanced Crew Scheduling
Link to Maintenance Routing Problem
Enhanced Model and Solution Approach

Airline Schedule Planning

Crew Scheduling: Some Background

- This problem has been studied by operations researchers for at least 4 decades
- Most major U.S. airlines use crew pairing optimizers for the cockpit crews
 - Crew costs are the airlines' second largest operating expense
 - Even small improvements in efficiency can have large financial benefits

Airline Crew Scheduling

- 2-stage process:
 - Crew Pairing Optimization
 - Construct minimum cost work schedules, called pairings, spanning several days
 - -Bidline Generation/Rostering
 - Construct monthly work schedules from the pairings generated in the first stage
 - Bidlines
 - Individualized schedules
 - Objective to balance workload, maximize number of crew requests granted, etc.

Some Definitions

- A *crewbase* is the home station, or domicile, of a crew
- A *crew pairing* is a sequence of *flights* that can be flown by a single crew:
 - -beginning and ending at a crewbase
 - spanning one or more days
 - satisfying FAA rules and collective bargaining agreements, such as:
 - maximum flying time in a day
 - minimum rest requirements
 - minimum connection time between two flights

Example: A Crew Pairing

Some More Definitions

• A *duty period* (or *duty*) is a sequence of flight legs comprising a day of work for a crew

 Alternative pairing definition: a *crew pairing* is a sequence of *duties* separated by rests

• A *crew schedule* is a sequence of *pairings* separated by time-off, satisfying numerous restrictions from regulatory agencies and collective bargaining agreements

Example: Duty Periods

Pairing = DP1(a,b,c) + rest + DP2(d,e) + rest + DP3(f)

		C
a b c	d e	I

12	(21)	120	Ω^2
12/	21	/20	05

Crew Pairing Problem (CP)

- Assign crews to flights such that every flight is covered, costs are minimized and labor rules are satisfied:
 - -Maximum flying time in a day
 - -Minimum rest requirements
 - -Minimum connection time

Crew Pairing Costs

- Duty costs: Maximum of 3 elements: -f1*flying time cost
 -f2*elapsed time cost
 -f3*minimum guarantee
- Pairing costs: Maximum of 3 elements: - f1*duty cost - f2*time-away-from-base - f3*minimum guarantee

Set Partitioning Model for CP: Variable Definition and Constraints

- A variable is a *pairing*
 Binary variables: =1 if pairing is assigned to a crew; = 0 if pairing not flown
- Set partitioning constraints require each flight to be covered exactly once
- Number of possible pairings (variables) grows exponentially with the number of flights

An Example

Flights: A B C D E F G H Potential pairings: -A-C-D-F (y₁): \$1 -A-B-E-F (y₂): \$2 -C-D-G-H (y₃): \$4 -B-E-G-H (y₄): \$6

Crew pairing solutions: $- x_1 => pairings 1, 4: \7 $- x_2 => pairings 2, 3: \6

Pairing 2

Pairing 3

•	•	
01.	1-1-4	
		.

Notation

- *P^k* is the set of feasible pairings for fleet family *k*.
- F^k is the set of daily flights assigned to fleet family k
- δ_{fp} equals 1 if flight f is in pairing p, else 0
- c_p is the cost of pairing p
- y_p is 1 if pairing p is in the solution, else 0

Formulation

st

 $y_p \in \{0,1\} \qquad \forall p \in P^k$

1.224J/ESD.204J

Example

Flight Cover Constraints:

Binary Pairing Restrictions:

У	1	+	\mathcal{Y}_2					=	1	ŀ
			\mathcal{Y}_2	+			\mathcal{Y}_4	=	1	ł
У	1	+			\mathcal{Y}_3			=	1	(
У	1	+			\mathcal{Y}_3			=	1	Ι
			\mathcal{Y}_2	+			\mathcal{Y}_4	=	1	ł
У	1	+	\mathcal{Y}_2					=	1	H
					\mathcal{Y}_3	+	\mathcal{Y}_4	=	1	(
					y_3	+	\mathcal{Y}_4	=	1	ł
у	1							E	0,1]
			\mathcal{Y}_2					e	0,1	2
			_		\mathcal{Y}_3			E	0,1	3
					- 5		\mathcal{V}_{A}	E	0,1	2

12/31/2003

1.224J/ESD.204J

Τ

Set Partitioning Model: Advantages and Disadvantages

- Advantages:
 - Easy to model complex work rules
 - Very few constraints
 - Linear objective function and constraints
- Disadvantages:
 - Huge number of variables- number of variables grows exponentially with the number of flights

Problem Size

- A typical US airline (with a hub-andspoke network) has millions or billions of potential pairings
 - -Example
 - 150 flights 90,000 pairings
 - 250 flights 6,000,000 pairings
- Need a specialized approach to consider problems of this size

Branch-and-Price: Branch-and-Bound for Large-Scale Integer Programs

All possible solutions at leaf nodes of tree (2^n solutions, where n is the number of variables)

Column Generation

Millions/Billions of Variables

LP Solution: Column Generation

- Step 1: Solve Restricted Master Problem
- Step 2: Solve Pricing Problem (generate columns with negative reduced cost)
- Step 3: If columns generated, return to Step 1; otherwise STOP

Network Representation

800 1200 1600 2000 800 1200 1600 2000

Branch-and-Bound with Too Many Variables

• Branch-and-Price

- -Branch-and-bound with bounding provided by LP solutions
- CP has too many variables to consider all of them
 - Solve linear programming relaxation using column generation

A Twist...

- Crew scheduling is critical to the airline industry
 - Second largest operating expense
 - Small improvement in solution quality has significant financial impact
- For decades, researchers have worked on finding better crew scheduling *algorithms*
- Our approach is to instead improve solution quality by *expanding the feasible set of solutions*

Airline Schedule Planning

Aircraft Maintenance Routing: Problem Definition

• Given:

- Flight Schedule for a single fleet
 - Each flight covered exactly once by fleet
- Number of Aircraft by Equipment Type
 - Can't assign more aircraft than are available
- -Turn Times at each Station
- FAA Maintenance Requirements
 - Maintenance required every 60 hours of flying
 - Airlines maintain aircraft every 40-45 hours of flying with the maximum time between checks restricted to three to four calendar days

Aircraft Maintenance Routing: Objective

- Find:
 - -Feasible assignment of individual aircraft to scheduled flights
 - Each flight is covered exactly once
 - Maintenance requirements are satisfied
 - Conservation of flow (balance) of aircraft is achieved
 - The number of aircraft used does not exceed the number available

Example: Maintenance Station in Boston

String Model: Variable Definition

- A string is a sequence of flights beginning and ending at a maintenance station with maintenance following the last flight in the sequence
 - Departure time of the string is the departure time of the first flight in the sequence
 - Arrival time of the string is the arrival time of the last flight in the sequence + maintenance time

String Model: Constraints

- Maintenance constraints
 - Satisfied by variable definition
- Cover constraints
 - Each flight must be assigned to exactly one string
- Balance constraints
 - Needed only at maintenance stations
- Fleet size constraints

 The number of assigned aircraft cannot exceed the number of aircraft in the fleet

1.224J/ESD.204J

Model Solution

- Complex constraints can be handled easily
- Model size
 - Huge number of variables
- Solution approach: branch-and-price
 Generate string variables only as-needed

Airline Schedule Planning

Integrate?

- Crew scheduling options are limited by maintenance routing decisions made earlier in the airline planning process
- Solving maintenance routing and crew scheduling simultaneously yields a large and challenging problem
- Idea is to improve crew scheduling by incorporating relevant maintenance routing decisions

Maintenance Routing and its Link to the Crew Pairing Problem

- The Maintenance Routing Problem (MR) find *feasible* routing of aircraft ensuring adequate aircraft maintenance opportunities and flight coverage
- Crews need enough time between two sequential flights to travel through the terminal -- *minimum connect time*
- If both flights are covered by the same aircraft, connection time can be reduced
- A *short connect* is a connection that is crew-feasible only if both flights are assigned to the same aircraft

1.224J/ESD.204J

Sequential Approach

Klabjan, Johnson, and Nemhauser

- Solve the crew pairing problem first, including all short connects in the crew pairing network
- Given the crew solution, require all short connects included in it to be part of the maintenance solution, which is solved second
- For "good" instances, this yields the optimal solution to the integrated problem (and many problems are "good")
- For "bad" instances, this leads to maintenance infeasibility

Cordeau, Stojković, Soumis, Desrosiers

- Directly integrate crew and maintenance routing models
- Basic maintenance routing and crew pairing variables and constraints, plus linking constraints
- Benders decomposition approach using a heuristic branching strategy
- For non-hub-and-spoke networks, positive computational results

Our Approach

- Generate different solutions to the maintenance routing problem
- Allow the crew pairing model to choose the maintenance routing solution with the most useful set of short connects

The Example Again

Flights: A B C D E F G H All Possible Short Connects: A-B A-C E-G

- MR solution (x₁) assigns the same aircraft to short connects A-C and E-G
- MR solution (x₂) assigns the same aircraft to short connect A-B

- Potential pairings:
 - A-C-D-F
 - A-B-E-F (y₂): \$2

 $(y_1): \$1$

- C-D-G-H (y₃): \$4
- B-E-G-H (y₄): \$6
- Crew pairing solutions:
 x₁ => pairings 1, 4: \$7
 - $-x_2 => pairings 2, 3: 6

Short Connect

Short Connect

Short Connect

Maintenance Solution 1

Maintenance Solution 2

If MR Solution 1 (A-C, E-G) => Optimal: Pairings 1, 4 -- \$7

If MR Solution 2 (A-B) => Optimal: Pairings 2, 3 -- \$6

Approach

- In the sequential approach, given a maintenance routing solution, the crew pairing problem is solved
- We allow the crew scheduler to choose from a collection of maintenance routing solutions
 - Select the one containing the set of short connects that allows the minimum cost crew pairing solution
- Problem: We don't want to solve one crew pairing problem for each maintenance routing solution
- Solution: Extended Crew Pairing Model (ECP)

The Extended Crew Pairing Model (ECP)

- Simultaneously select a cost minimizing set of crew pairings and a corresponding feasible maintenance routing solution from a given set of maintenance routing solutions
- Add constraints that allow pairings with a short connect to be selected only if the chosen maintenance solution assigns the same aircraft to that short connect

The Example Again

Flights: A B C D E F G H Short Connects: A-B A-C E-G

- MR solution (x₁) uses short connects A-C and E-G
- MR solution (x₂) uses short connect A-B

- Potential pairings:
 - -A-C-D-F (y₁): \$1
 - A-B-E-F (y₂): \$2
 - C-D-G-H (y₃): \$4
 - -B-E-G-H (y₄): \$6
- Crew pairing solutions:

 x₁ => pairings 1, 4: \$7
 x₂ => pairings 2, 3: \$6

12/31/2003

Matrix Representation for the									
Example									
	X		2 Y ₁	y ₂	у ₃	У ₄	rhs		
	0	0	1	1	0	0 =	1	А	
	0	0	0	1	0	1 =	1	В	
Flights:	0	0	1	0	1	0 =	1	C	
	0	0	1	0	1	0 =	1	D	
	0	0	0	1	0	1 =	1	E	
	0	0	1	1	0	0 =	1	F	
	0	0	0	0	1	1 =	1	G	
	0	0	0	0	1	1 =	1	Н	
	0	1	0	-1	0	0 ≥	0	A-B	
Short Connects:	1	0	-1	0	0	$0 \geq$	0	A-C	
	1	0	0	0	0	-1 ≥	0	E-G	
Convexity:	1	1	0	0	0	0 =	1	Conv.	

12/31/2003

1.224J/ESD.204J

Notation

- *P^k* is the set of feasible pairings for fleet family *k*.
- F^k is the set of flights assigned to fleet family k
- T^k is the set of short connects for the flights assigned to fleet family k
- *S^k* is the set of feasible MR solutions for the flights assigned to fleet family *k*

Notation, cont.

- δ_{fp} is 1 if flight f is included in pairing p, else 0
- α_{ts} is 1 if MR solution *s* includes short connect *t*, else 0
- β_{tp} is 1 if short connect *t* is contained in pairing *p*, else 0
- c_p is the cost of pairing p

Notation, cont.

x_s is a binary decision variable with value 1 if MR solution s is chosen, else
 0

• y_p is a binary decision variable with value 1 if pairing p is chosen, else 0

ECP Formulation

1.224J/ESD.204J

ECP Enhancements

- By exploiting dominance relationships, can dramatically reduce the **number** of MR columns considered in finding an optimal ECP solution
 - MR1 containing short connects AB, CD, GH dominates MR2 containing short connect AB
 - Do not need to include MR2 in ECP
- Theoretical bounds and computational observations
 - Example: 61 flights => >> 25,000 MR solutions =>
 4 non-dominated MR solutions (bounded by 35)
 - Can find these 4 non-dominated MR solutions by solving 4 MR problems

ECP Enhancements, cont.

- Proof: Can relax the **integrality** of MR columns and still achieve integer solutions:
 - Same number of binary variables as original CP

LP relaxation of ECP is tighter than LP relaxation of a basic integrated approach

1.224J/ESD.204J

Computational Experiment

• Problem A:

Lower bound: ECP with 16 MR columns: Optimality gap:

31,396.10 31,396.10 0%

• Problem B:

Lower bound: ECP with 20 MR columns: Optimality gap: 25,076.60 25,498.60 1.7%

Airline Crew Scheduling Successes

- Excess crew costs in the planning process has been driven to 0-3%
 - -AA was 8-10% 15 yrs ago: now 0-2%
 - -Each 1% is worth about \$10 million/yr
 - 1997 had 9,000 pilots costing \$1.2 billion
 - -Larger schedules and complex rules

Crew Pre-Month Planning

Ellis Johnson, Georgia Tech

Reserve Demand

Ellis Johnson, Georgia Tech

Crew: The Rest of The Story

Ellis Johnson, Georgia Tech

- Manpower planning, conflicts, overtime flying, and reserves
- In US airlines as high as 30% of the pilots may be on reserve bid lines
 - -Actual flying is about 50% of usual
 - Of that flying, more than half is to cover conflicts and as little as 1/3 is to cover disruptions

Conclusions

- Crew scheduling is critical to airline profitability
 - Making maintenance routing decisions independently increases costs
- A model that fully integrates MR and CP can be inflexible and difficult to solve
 - ECP exploits that only some maintenance routing information is relevant and uses dominance to reduce the size of the problem
- More work to be done... especially postpairing optimization