
Formulating an MP: An Overview

Prepared by: Nathaniel Grier

9 November, 2001

This document is intended to help guide you through the process of formulating an MP. It will
provide some guidelines and general “rules-of-thumb”. Model formulation is more of an art than
a science, however, and none of these rules are hard and fast. As you will see in class, there are
often multiple ways to formulate a problem and the way in which you do so can make the difference
between whether you can find a solution to your problem or not.

1 The pieces of a Formulation

There are, generally, three parts which define a model.

1. The objective function.

2. The constraints on the problem.

3. The decision variables.

The first two items are the terms in which one often describes a problem. Yet they rely on the
underlying assumptions of the decision variables. You will see that you are often faced with a
“chicken-and-egg” problem when formulating a problem.

1.1 The Objective Function

The objective function summarizes just that: your objective of the problem. If you are maximizing
profit, than it will be a function which determines the profit for a given set of decision variables.
It is never an equation. Note that for simplicity sometimes we may write:

Minimize : p =
∑

. . .

but this is merely shorthand for

Minimize : p

Subject to : p =
∑

. . .

The objective function can be very simple or can be very complex. As we will see later, we will
often move pieces of the problem into the objective function (and out of the constraints) in order
to make the problem tractable.

1

ocw
Courtesy of Nathaniel Grier. Used with permission.

1.2 The Constraints

The constraints are the limitations placed on the problem and control the allowable solutions. If,
for example, we have a limit on the amount of goods we can produce, this would be modeled by
a constraint. Similarly, in the set-covering problem, we enforce the requirement that, for example,
every route is operated, with an appropriate constraint. These are equations or inequalities and
are usually presented with the decision variables on the left and the constant term(s) on the right.
Example constraints would be:

∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = bi ∀ i ∈ N

yi + yi+1 ≤ di ∀ i ∈ P

1.3 The Decision Variables

The decision variables model the “decisions” we are trying to make by solving the optimization
problem. For example, if we are trying to determine the production levels which will maximize our
profit, then we would have a decision variable for each of the products we produce; the value of
each variable would indicate the number of each product we should produce.

In addition to direct decision variables, such as the amount of a product to produce, we may
need to introduce additional, secondary variables to fully encapsulate the problem situation. For
example in “location” problems – problems where you try to find the optimal location of a facility
to meet some other objective – we often must introduce a binary variable indicating whether we
open a plant a some location and use this to ensure that our solution does not include using a plant
which we don’t build. You can see why the formulation of a problem is not always straightforward
— often in the process of developing the model you will realize that you must introduce additional
variables to capture the restrictions of the problem.

Finally, as we alluded to in the previous paragraph, the nature of the variables also plays a
role in the formulation and solution. In a linear program, all the variables are continuous and
may assume any value in the set of real numbers. As negative quantities often make little sense in
real-world situations, there is often a non-negativity constraint imposed (so the decision variables
are in R

+). Real-world problems often have the further constraint that we are dealing with “whole”
things, and thus the decision variables are restricted to the set of integers Z (all or non-negative).
This formulation is known as an integer program. It is important to understand that the solution
to a linear program and integer program with the same constraints and objective function is most
likely not the same. Note that whether the variables are integer or real-valued is a function of the
solving technique and cannot generally be specified as a constraint of the model. The one sort of
exception to this rule are binary variables – variables which can take on the value of 0 or 1. These
are not allowed in a pure linear program. However in mixed programs you can have binary variables
with the rest of the variables real-valued. Such restrictions are also a function of the solver you
use to solve the problem - some will allow “non-traditional” mixes of variable types and others are
very strict about uniformity among the variables.

1.4 Data

It is important to differentiate between data and variables. In a model with a number of letters
and subscripts it is important to remember which are the variables and which are the fixed data.
Generally, the data is known before you formulate a model and the task of the formulation is to

2

relate the known data with the unknown variables. Often, though, you will find that there is not
a perfect fit between your formulation in the data you have at hand. In some cases you will find
yourself with extraneous data. In these cases you must choose what is appropriate and what to
leave out. More frequently, however, you will find that you do not have all the data you need, or
think you need. In these cases, you will have to either obtain the data you lack or try to reformulate
the problem to utilize only the data you have available. In the problem sets for this class you will
always be provided sufficient information to solve the problem.

2 Formulating a Model – One Approach

As mentioned earlier, there’s no one correct way to develop a model formulation. Often you will
find that it is an iterative process where in developing one part of the formulation you realize you
must add to another part. Below I give an approach that I have found to work well for me.

2.1 Determining the Objective Function

While the objective function is a function of your decision variables and subject to any constraints,
I find it works best to formulate the objective function so that you know what you are working
toward in the rest of the problem. Also, the objective is often readily obtainable from the problem
statement.

At this stage it’s not necessary to write the problem algebraically, especially if the objective is
quite complex. If our objective is to minimize the costs we incur our objective function might look
something like this:

Minimize :
∑

i

costi

How costi is determined may be easy or quite complicated. In this simple production case we might
incur a unit cost for each type of good so costi = numi · unitCosti. In the case of the package-flow
problem, as we will see later in the semester, our objective is essentially to minimize costs as well,
but the formulation of the objective function is much more complex.

2.2 Determine the Decision Variables

Now that you have a handle on the objective function, we turn to deciding on the decision variables.
Hopefully the decision variables will fall out directly from the objective function. In the example
above, our decision variable was numi. For ease of writing the model, though, we usually use single
letter variables. Traditionally letters at the end of the alphabet, often starting with x, are used as
decision variables, reserving those near the beginning and middle for constants.

Furthermore, as you have already noticed, we tend to use subscripts to make up for the fact
that there are a limited number of letters. This also allows us to present the problem in a very
compact way. So if we use xi in place of numi, and let ci = unitCosti, we end up with the very
compact objective function:

Minimize :
∑

i

xici

We also use subscripts to represent relationships between two things. In flow problems, for
example, we often denote the flow between some point i and another point j by xij . Note that
xij is distinct from xji; while they may be the same or equal in some cases, in many others the
ordering of the subscripts is quite important.

3

At this point you also want to introduce any auxiliary variables if you can see, from the objective,
that they will be necessary. For example, if you are performing a flow assignment, the primary
costs arise from the individual flows multiplied by the unit costs. But if there is some additional
fixed cost for using a link you must introduce an appropriate variable.

2.3 Determining the Constraints

In the simplest of problems there may be no constraints other than variable value constraints, such
as the non-negativity or binary constraints. In many cases, however, it is the constraints which
complete the problem.

The first step is to write, in terms of your decision variables, any constraints which are inherent
to the problem. If, for instance, you know that you cannot produce more than a certain amount
of good i, or that the total number of goods produced must be equal to some constant, you would
include it here. In our previous example, if, for each good i, we could produce no more than bi

units, we would model that as follows:

xi ≤ bi ∀ i

At this point, you may find that you have completely encapsulated the model: the objective
function fully includes all attributes of the problem (all costs, for example), and the constraints
completely model all limitations. You may, however, realize that there are constraints which you
cannot model given the variables you have chosen. At this point you need to reexamine the problem
and decide how to model those constraints, introducing variables as necessary.

If you have unusually complicated constraints, this will often necessitate the introduction of
additional variables. If you do add extra variables, or ones which do not seem directly apparent
from the problem statement, it is important that you then add the appropriate constraints to bound
the new variables.

Finally, it is important to not that in order for (most) solvers to solve your formulation, it (and
in particular the constraints) must be linear. We will talk more about this below, but for now you
should now that functions such as max{...} or if-then constraints are not linear.

4

3 Two Examples

As I’ve said several times, MP formulation is more of an art than a science. To that end, here are
a few examples which we go through step-by-step.

3.1 Example: Product Distribution

A producer has just completed a limited production run of its new product. It has a number of
product testers to whom it wishes to distribute a sample of the product as soon as possible. But
in order to minimize the cost of this distribution it has decided to use its existing supply network.
This network G consists of a set of transfer points, or nodes, N between which the distribution is
non-stop. Let |N | = n; we want to deliver a sample to each of the n − 1 cities in our distribution
network. We denote the set of these connections as A, and the travel time along such a connection,
starting at some point i and connecting to a point j, by τij . If we number the plant as node 0,
provide a formulation of the problem given that we must deliver only one sample to each destination.

Additionally, how would you model the following constraints:

(a) In order to have as small an impact on existing shipments as possible, you impose a limit
such that a given city-pair route (i, j) can can be used by at most uij sample products. In
this case your objective is to minimize the total travel time.

(b) Instead of one plant producing all your samples, you now have two, each of which produced
n−2

2 of the total samples; let the two plants be located in cities 0 and 1. Reformulate your
model to minimize the total travel time.

A Solution

The problem above is actually a version of the classic shortest paths problems. There are a number
of ways to formulate this problem but we give here the most common. Our objective is to min-
imize the travel time of each sample. If all the travel times are non-negative and the network is
uncapacitated, this is equivalent to minimizing the total travel time. Since travel time may not be
as intuitive, it helps to think of it as the cost (in dollars, for example). Given that we are thinking
of “shortest paths”, a first inclination might be to delineate each and every path. However, as
the number of such paths in combinatorial, we would not be able to easily find a solution to the
problem in a large network. Instead, if we view the problem in terms of arcs, the problem becomes
readily solvable. In this case we get an objective function of the following form:

Minimize :
∑

packages on each arc · travel time on arc

We see that the travel time on each path is accounted for; we have only “regrouped” the terms in
the above formulation. The only variable we need introduce, then, is the flow on each arc, which
is traditionally denoted xij . Thus our objective is now:

Minimize :
∑

(i,j)∈A

xijτij

The only constraint we have is that each destination receive one package and one package only.
We can model this using the classical “balance” constraint. That is we sum up all the flow entering
a node and subtract it from the sum of the flow leaving a node and force this to equal some value
bi for each node i. Since we need not deliver any samples to the plant, but we’re delivering a total

5

From ↓ \ To → Region 1 Region 2 Region 3
New York 20 40 50
Los Angeles 48 15 26
Chicago 26 35 18
Atlanta 24 50 35

Table 1: Shipping costs, in dollars, to send 1 unit from a given warehouse to a given region, for
Example 3.2.

of n− 1 samples to the other cities, so b0 = n− 1. For every other city, however, we want one more
sample to end up there than to leave, so for i �= 0, bi = −1. While it is convention to define the
balance such that the source nodes have a positive bi and the sinks a negative value, it is completely
fine to reverse the two. Finally, we can state our constraint as follows:

∑

{j:(i,j)∈A}
xij −

∑

{j:(j,i)∈A}
xji = bi ∀ i ∈ N

We must, of course, remember to include the restriction that xij ≥ 0. More accurately, we
should state that xij ∈ Z

+ since it does not make much sense to half of a sample down one path
and half down another.

We can model the additional constraints as follows:

(a) In this case while our objective has changed, our objective function need not – it still works
to minimize total travel time. To model the capacity constraint, we need only introduce an
upper bound constraint such that:

xij ≤ uij ∀ (i, j) ∈ A

Because we did not place any additional constraints, this one additional constraint is sufficient.

(b) In this case our objective and objective function remain the same as the previous case, so
we need not reexamine those. Moreover, we need not change our model at all. Because we
formulated the problem in terms of flows on arcs and utilized the balance constraints, we
need only change b0 and b1 to reflect their new values – n−2

2 – while all the other balance
constraints are unchanged. Think, though, how much more work we would have to do if we
had formulated this problem in terms of paths. We would have to enumerate all the paths
from the second plant and calculate their distances in order to solve this modified version of
the problem. Remember: it may not be easy to develop a formulation which is robust, but
the extra time can more than repay itself in future savings.

3.2 Example: Warehouse Location

A company is considering opening warehouse(s) in four cities: New York, Los Angeles, Chicago
and Atlanta. Each warehouse can ship 100 units per week. The weekly fixed cost of keeping each
warehouse open is $400 for New York, $500 for Los Angeles, $300 for Chicago and $150 for Atlanta.
Region 1 requires 80 units per week, Region 2 requires 70 units per week and Region 3 requires 40
units per week. The shipping costs costs are shown in Table 1.

(a) Formulate the problem to meet weekly demands at minimum cost.

6

(b) How can the following conditions be imposed?:

1. If the New York warehouse is opened, the Los Angeles warehouse must be opened.

2. At most two warehouses can be opened.

3. Either the Atlanta or the Los Angeles warehouse must be opened (but not both).

A Solution

The first step would be to characterize the objective function. While it may not be immediately
apparent, with a little thought we come up with the following:

Minimize :
∑

i∈W

Costi · Openi +
∑

i∈W

∑

j∈R

transpCostij · flowij

where W is the set of warehouse locations and R is the set of regions. This objective function
encapsulates all our costs. In this case our “pseudovariables” above translate directly into real
variables. We let yi be a binary variable representing whether we open the warehouse or not. And
we let xij represent the flow from warehouse i to region J . We can then denote the weekly cost of
operating warehouse i by ci and the unit transportation cost by tij .

We now turn to identifying the constraints necessary to model those presented in the problem
statement. First, we are given the constraint that the flow out of each warehouse must be no more
than 100 units per week. We can model this as follows:

∑

j

xij ≤ 100 ∀ i ∈ W

Next we must ensure that the demand is met in each region, and can do so with the following
constraint, letting bj represent the demand in region j:

∑

i

xij = bj ∀ j ∈ R

Finally we must somehow tie everything together, ensuring that the flow out of a warehouse is only
non-zero if we decide to open that warehouse – that is if yi is 1. The most efficient way to do this
is by modifying the first constraint as follows:

∑

j

xij ≤ 100 · yi ∀ i ∈ W

The resulting constraint is still linear and satisfies the requirement that the flow out be 0 if the
warehouse is not opened: if yi is 0, the combined flow out of warehouse i must be 0; if we open
warehouse i, the only restriction on its flow is that the total flow must be less than 100 units per
week.

The above constraints rely on two implicit constraints on the variable values which it is impor-
tant to state:

xij ∈ Z
+, yi ∈ {0, 1}

7

These last two constraints are quite important as otherwise we might end up with a solution which
makes no “real-world” sense. To summarize, then, our formulation is:

Minimize :
∑

i∈W

ci · yi+
∑

i∈W

∑

j∈R

tij · xij

Subject to :
∑

j

xij ≤ 100 · yi ∀ i ∈ W

∑

i

xij = bj ∀ j ∈ R

xij ∈ Z
+, yi ∈ {0, 1}

We now turn to modeling the additional constraints.

(a) We are asked how to ensure that if the New York warehouse is opened then the Los Angeles
warehouse is also opened. So if yNY C = 1, then yLA = 1; but if yNY C = 0 there is no
restriction on yLA. If we view this in terms of the decision variables, we see that yLA must
always be greater than yNY C . This translates into the following constraint which answers the
question:

yNY C ≤ yLA

(b) We are asked to develop a constraint which will limit the total number of warehouses opened
to no more than two. Again, we can make use of the decision variables yi. If we limit the
number of warehouses to 2, this is the same as limiting the sum of the yi to 2. This, then, is
our constraint: ∑

i

yi ≤ 2

(c) Finally, we are told that either the Atlanta or Los Angeles warehouse must be opened but
not both. Viewing the constraint in terms of the decision variables yi, we see that this is
equivalent to saying that the sum of yLA and yATL is 1. Again, this is our constraint and
answers the problem:

yLA + yATL = 1

In these last few constraints, we saw, once again, how important to develop a robust model formu-
lation. In our case we were able to make a number of changes to the problem, but each required
only a small change in the formulation of the model.

8

A Set Notation Review

A set is some collection of distinct objects (i.e. no repetition). Some common sets are:

R The set of real numbers
Z The set of integers
∅ The null (empty) set — this is a set with no elements

Note that we will refer to the non-negative elements of a set with a superscript ‘+’; thus we
refer to the non-negative real numbers by R

+.

Some notation we use to help us define sets includes:

∈ “Is an element of”: x ∈ S means that x is one of the objects in the set S
{ } “The set containing”: We usually list the members of a set between brackets (see example below)
: or | “Such that”: We use this operator to help define which elements are included in a set.

For instance, if we are given a set S we can create a subset such that all elements
are non-negative. This new set would be written as {x ∈ S : x ≥ 0} (The set consisting of
all non-negative elements of S).

Some operators on sets:

|S| “Ordinality of S”: this is the size of, or number of elements in, the set S
S ∪ T “The union of S and T”: this is the collection of all elements in either set S or set T
S ∩ T “The intersection of S and T”: this is the collection of all elements in both S and T
S\T “S minus T”: this is the set of elements in S but not in T

Some relations between sets are expressed as:

S ⊂ T “S is a subset of T”: all elements in S are contained in T
S = T “S is equal to T”: all elements in S are contained in T and vice versa

Some additional shorthand notation you will see:

∃ “There exists”
∀ “For all”

9

