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CHAPTER 4 - Frequently used Symbols 

� = Numerical coefficients t = Collision time c

a  = Generalized sensitivity coefficient T = Reaction time 
a (t)  =  Instantaneous acceleration of a following U = Speed of a lead vehicle 

�,m

f �

vehicle at time t Uf = Speed of a following vehicle 
a (t)  =  Instantaneous acceleration of a lead 

vehicle at time t
� = Numerical coefficient 
C = Single lane capacity (vehicle/hour) 
� = Rescaled time (in units of response time, 

T)
� = Short finite time period 

Uf = Final vehicle speed 
Uf = Free mean speed, speed of traffic near zero 

concentration 
Ui = Initial vehicle speed 
Urel = Relative speed between a lead and 

following vehicle 
u (t)  =  Velocity profile of the lead vehicle of a 

�

�

F = Amplitude factor 
� = Numerical coefficient 
k = Traffic stream concentration in vehicles 

per kilometer 
kj = Jam concentration 
k = Concentration at maximum flow 

platoon 
V = Speed 
Vf = Final vehicle speed 
� = Frequency of a monochromatic speed 

oscillation 
ẍf(t) = Instantaneous acceleration of a following m

kf = Concentration where vehicle to vehicle 
interactions begin 

k = Normalized concentration 

vehicle at time t
ẍ

�
(t) = Instantaneous speed of a lead vehicle at 

time tn

L = Effective vehicle length ẍf(t) = Instantaneous speed of a following vehicle 
-1L = Inverse Laplace transform at time t

�� = Proportionality factor x
�
(t) = Instantaneous speed of a lead vehicle at 

�i = Sensitivity coefficient, i = 1,2,3,... time t
�ln(x) = Natural logarithm of x xf(t) = Instantaneous speed of a following vehicle 

q = Flow in vehicles per hour at time t
q = Normalized flow x

�
(t) = Instantaneous position of a lead vehicle at n

<S> = Average spacing rear bumper to rear 
bumper 

Si = Initial vehicle spacing 
Sf = Final vehicle spacing 
S = Vehicle spacing for stopped traffic 

time t
xf(t) = Instantaneous position of the following 

vehicle at time t
xi(t) = Instantaneous position of the ith vehicle at 

time to

S(t) = Inter-vehicle spacing z(t) = Position in a moving coordinate system 
�S = Inter-vehicle spacing change 
T = Average response time < x > = Average of a variable x
T = Propagation time for a disturbance o

t = Time � = Frequency factor 



4. 
CAR FOLLOWING MODELS 

It has been estimated that mankind currently devotes over 10 
million man-years each year to driving the automobile, which on 
demand provides a mobility unequaled by any other mode of 
transportation.  And yet, even with the increased interest in 
traffic research, we understand relatively little of what is 
involved in the "driving task".  Driving, apart from walking, 
talking, and eating, is the most widely executed skill in the world 
today and possibly the most challenging. 

Cumming (1963) categorized the various subtasks that are 
involved in the overall driving task and paralleled the driver's 
role as an information processor  (see Chapter  3).  This chapter 
focuses on one of these subtasks, the task of one vehicle 
following another on a single lane of roadway (car following). 
This particular driving subtask is of interest because it is 
relatively simple compared to other driving tasks, has been 
successfully described by mathematical models, and is an 
important facet of driving.  Thus, understanding car following 
contributes significantly to an understanding of traffic flow.  Car 
following is a relatively simple task compared to the totality of 
tasks required for vehicle control.  However, it is a task that is 
commonly practiced on dual or multiple lane roadways when 
passing becomes difficult or when traffic is restrained to a single 
lane.  Car following is a task that has been of direct or indirect 
interest since the early development of the automobile. 

One aspect of interest in car following is the average spacing, S,
that one vehicle would follow another at a given speed, V. The 
interest in such speed-spacing relations is related to the fact that 
nearly all capacity estimates of a single lane of roadway were 
based on the equation: 

C = (1000) V/S (4.1) 

where 
C = Capacity of a single lane 

(vehicles/hour) 
V = Speed (km/hour) 
S = Average spacing rear bumper to rear 

bumper in meters 

The first Highway Capacity Manual (1950) lists 23 
observational studies performed between 1924 and 1941 that 
were directed at identifying an operative speed-spacing relation 
so that capacity estimates could be established for single lanes of 

roadways. The speed-spacing relations that were obtained from 
these studies can be represented by the following equation: 

S � ���V��V 2 (4.2) 

where the numerical values for the coefficients, �, �, and � take 
on various values.  Physical interpretations of these coefficients 
are given below: 

� = the effective vehicle length, L
� = the reaction time, T
� = the reciprocal of twice the maximum average 

deceleration of a following vehicle 

2In this case, the additional term, � V , can provide sufficient 
spacing so that if a lead vehicle comes to a full stop 
instantaneously, the following vehicle has sufficient spacing to 
come to a complete stop without collision.  A typical value 

2empirically derived for � would be � 0.023 seconds /ft .  A less 
conservative interpretation for the non-linear term would be: 

�1
� � 0.5(af

�1
�a

�
) (4.3) 

where aƒ and a   are the average maximum decelerations of the 
�

following and lead vehicles, respectively.  These terms attempt 
to allow for differences in braking performances between 
vehicles whether real or perceived (Harris 1964). 

For � = 0,  many of the so-called "good driving" rules that have 
permeated safety organizations can be formed.  In general, the 
speed-spacing Equation 4.2 attempts to take into account the 
physical length of vehicles; the human-factor element of 
perception, decision making, and execution times; and the net 
physics of braking performances of the vehicles themselves.  It 
has been shown that embedded in these models are theoretical 
estimates of the speed at maximum flow, (�/�)0.5; maximum 

0.5 -1flow,  [� + 2(� �) ] ;  and the speed at which small changes in 
traffic stream speed propagate back through a traffic stream, 

0.5(�/�)   (Rothery 1968). 

The speed-spacing models noted above are applicable to cases 
where each vehicle in  the traffic stream maintains the same or 
nearly the same constant speed and each vehicle is attempting to 
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maintain the same spacing (i.e., it describes a steady-state traffic 
stream). 

Through the work of Reuschel (1950) and Pipes (1953), the 
dynamical elements of a line of vehicles were introduced. In 
these works, the focus was on the dynamical behavior of a 
stream of vehicles as they accelerate or decelerate and each 
driver-vehicle pair attempts to follow one another.  These efforts 
were extended further through the efforts of Kometani and 
Sasaki (1958) in Japan and in a series of publications starting in 

4.1  Model Development 

Car following models of single lane traffic assume that there is 
a correlation between vehicles in a range of inter-vehicle 
spacing, from zero to about 100 to 125 meters and provides an 
explicit form for this coupling.  The modeling assumes that each 
driver in a following vehicle is an active and predictable control 
element in the driver-vehicle-road system.  These tasks are 
termed psychomotor skills or perceptual-motor skills because 
they require a continued motor response to a  continuous series 
of stimuli. 

The relatively simple and common driving task of one vehicle 
following another on a straight roadway where there is no 
passing (neglecting all other subsidiary tasks such as steering, 
routing, etc.) can be categorized in three specific subtasks: 

� Perception: The driver collects relevant information 
mainly through the visual channel. This 
information arises primarily from the motion 
of the lead vehicle and the driver's vehicle. 
Some of the more obvious information 
elements, only part of which a driver is 
sensitive to, are vehicle speeds, accelerations 
and higher derivatives (e.g., "jerk"), inter-
vehicle spacing, relative speeds, rate of 
closure, and functions of these variables (e.g., 
a "collision time"). 

� Decision 
Making: A driver interprets the information obtained by 

sampling and integrates it over time in order to 
provide adequate updating of inputs. 
Interpreting the information is carried out 
within the framework of a knowledge of 

1958 by Herman and his associates at the General Motors 
Research Laboratories.  These research efforts were microscopic 
approaches that focused on describing the detailed manner in 
which one vehicle followed another. With such a description, 
the  macroscopic  behavior  of  single lane traffic flow can be 
approximated.  Hence, car following models form a bridge 
between individual "car following" behavior and the 
macroscopic world of a line of vehicles and their corresponding 
flow and stability properties. 

vehicle characteristics or class of 
characteristics and from the driver's vast 
repertoire of driving experience. The 
integration of current information and 
catalogued knowledge allows for the 
development of driving strategies which 
become "automatic" and from which evolve 
"driving skills". 

� Control: The skilled driver can execute control 
commands with dexterity, smoothness, and 
coordination, constantly relying on feedback 
from his own responses which are 
superimposed on the dynamics of the system's 
counterparts (lead vehicle and roadway). 

It is not clear how a driver carries out these functions in detail. 
The millions of miles that are driven each year attest to the fact 
that with little or no training, drivers successfully solve a 
multitude of complex driving tasks.  Many of the fundamental 
questions related to driving tasks lie in the area of 'human 
factors' and in the study of how human skill is related to 
information processes. 

The process of comparing the inputs of a human operator to that 
operator's outputs using operational analysis was pioneered by 
the work of Tustin (1947), Ellson (1949), and Taylor (1949). 
These attempts to determine mathematical expressions linking 
input and output have met with limited  success.  One of the 
primary difficulties is that the operator (in our case the driver) 
has no unique transfer function; the driver is a different 
'mechanism' under different conditions.  While such an approach 
has met with limited success, through the course of studies like 
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these a number of useful concepts have been developed.  For 
example, reaction times were looked upon as characteristics of 
individuals rather than functional characteristics of the task itself. 
In addition, by introducing the concept of "information", it has 
proved possible to parallel reaction time with the rate of coping 
with information.  

The early work by Tustin (1947) indicated maximum rates of the 
order of 22-24 bits/second (sec).  Knowledge of human 
performance and the rates of handling information made it 
possible to design the response characteristics of the machine for 
maximum compatibility of what really is an operator-machine 
system. 

The very concept of treating an operator as a transfer function 
implies, partly, that the operator acts in some continuous 
manner.  There is some evidence that this is not completely 
correct and that an operator acts in a discontinuous way.  There 
is a period of time during which the operator having made a 
"decision" to react is in an irreversible state and that the response 
must follow at an appropriate time, which later is consistent with 
the task. 

The concept of a human behavior being discontinuous in 
carrying out tasks was first put forward by Uttley (1944) and 
has been strengthened by such studies as Telfor's (1931), who 
demonstrated that sequential responses are correlated in such a 
way that the response-time to a second stimulus is affected 
significantly by the separation of the two stimuli.  Inertia, on the 
other hand, both in the operator and the machine, creates an 
appearance of smoothness and continuity to the control element. 

In car following, inertia also provides direct feedback data to the 
operator which is proportional to the acceleration of the vehicle. 
Inertia also has a smoothing effect on the performance 
requirements of the operator since the large masses and limited 
output of drive-trains eliminate high frequency components of 
the task. 

Car following models have not explicitly attempted to take all of 
these factors into account.  The approach that is used assumes 
that a stimulus-response relationship exists that describes, at 
least phenomenologically, the control process of a driver-vehicle 
unit.  The stimulus-response equation expresses the concept that 
a driver of a vehicle responds to a given stimulus according to a 
relation:

 Response = � Stimulus (4.4) 

where �  is a proportionality factor which equates the stimulus 
function to the response or control function.  The stimulus 
function is composed of many factors:  speed, relative speed, 
inter-vehicle spacing, accelerations, vehicle performance, driver
thresholds, etc. 

Do all of these factors come into play part of the time?  The 
question is, which of these factors are the most significant from 
an explanatory viewpoint. Can any of them be neglected and still 
retain an approximate description of the situation being 
modeled? 

What is generally assumed in car following modeling is that a 
driver attempts to:  (a) keep up with the vehicle ahead and (b) 
avoid collisions. 

These two elements can be accomplished if the driver maintains 
a small average relative speed, U  over short time periods, say rel 

�t, i.e., 

1 t��t/2<U
�
�Uf> � <Urel>

�t�t��t/2
Urel(t)dt (4.5) 

is kept small.  This ensures that ‘collision’ times: 

S(t)t �c Urel 
(4.6) 

are kept large, and inter-vehicle spacings would not appreciably 
increase during the time period, �t.  The duration of the �t will 
depend in part on alertness, ability to estimate quantities such as: 
spacing, relative speed, and the level of information required for 
the driver to assess the situation to a tolerable probability level 
(e.g., the probability of detecting the relative movement of an 
object, in this case a lead vehicle) and can be expressed as a 
function of the perception time. 

Because of the role relative-speed plays in maintaining relatively 
large collision times and in preventing a lead vehicle from 
'drifting' away, it is assumed as a first approximation that the 
argument of the stimulus function is the relative speed. 

From the discussion above of driver characteristics, relative 
speed should be integrated over time to reflect the recent time 
history of events, i.e., the stimulus function should have the form 
like that of Equation 4.5 and be generalized so that the stimulus 
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at a given time, t, depends on the weighted sum of all earlier  where 
values of the relative speed, i.e., 

�(t�T) 0, for t�T (4.9) �

< U �Uf > � <Urel >��
t��t/2

�(t�t �)Urel(t
�)dt (4.7) �

t��t/2

� ��(t�T) 1, for t T (4.10) 

where � (t)  is a weighing function which reflects a driver's 
estimation, evaluation, and processing of earlier information 
(Chandler et al. 1958).  The driver weighs past and present and 
information and responds at some future time.  The consequence 

�
�of using a number of specific weighing functions has been �(t�T)dt 1�o

examined (Lee 1966), and a spectral analysis approach has been 
used to derive a weighing function directly from car following 
data (Darroch and Rothery 1969). 

For this case, our stimulus function becomes 
The general features of a weighting function are depicted  in 
Figure 4.1.  What has happened a number of seconds (� 5 sec) Stimulus(t) = U  (t - T) - U  (t - T) (4.11) 

� f

in the past is not highly relevant to a driver now, and for a short 
time (� 0.5 sec) a driver cannot readily evaluate the information 
available to him.  One approach is to assume that

�(t) �(t�T) (4.8) 

which corresponds to a simple constant response time, T, for a 
driver-vehicle unit.  In the general case of � (t), there is an 
average response time, T , given by 

�

� �T(t) ��
tt �(t �)dt (4.12) 

0

i

Past 

W e ghting 
function 

Future 

Now 

Time 

Figure 4.1 
Schematic Diagram of Relative Speed Stimulus 

and a Weighting Function Versus Time (Darroch and Rothery 1972). 
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The main effect of such a response time or delay is that the driver 
is responding at all times to a stimulus.   The driver is observing 
the stimulus and determining a response that will be made some 
time in the future.  By delaying the response, the driver obtains 
"advanced" information. 

For redundant stimuli there is little need to delay response, apart 
from the physical execution of the response.  Redundancy alone 
can provide advance information and for such cases, response 
times are shorter. 

The response function is taken as the acceleration of the 
following vehicle, because the driver has direct control of this 
quantity through the 'accelerator' and brake pedals and also 
because a driver obtains direct feedback of this variable through
inertial forces, i.e., 

Response  (t) = a (t) = ẍ f (t) (4.13)  f

where x (t)  denotes the longitudinal position along the roadway 
of the ith vehicle at time t.  Combining Equations4.11 and 4.13 
into Equation 4.4 the stimulus-response equation becomes 
(Chandler et al. 1958): 

. (4.14) 
�ẍf(t) �[x

.
(t�T)�xf(t�T)]

�

or equivalently 

. (4.15) 
�ẍf(t�T) �[x

.
(t)�xf(t)]�

Equation 4.15 is a first approximation to the stimulus-response 
equation of car-following, and as such it is a grossly simplified 
description of a complex phenomenon.  A generalization of car 
following in a conventional control theory block diagram is 
shown in Figure 4.1a.  In this same format the linear car-
following model presented in Equation 4.15 is shown in Figure 
4.1b. In this figure the driver is represented by a time delay and 
a gain factor. Undoubtedly, a more complete representation of 
car following includes a set of equations that would model the 
dynamical properties of the vehicle and the roadway 
characteristics.  It would also include the psychological and 
physiological properties of drivers, as well as couplings between 
vehicles, other than the forward nearest neighbors and other 
driving tasks such as lateral control, the state of traffic, and 
emergency conditions. 

For example, vehicle performance undoubtedly alters driver 
behavior and plays an important role in real traffic where mixed 
traffic represents a wide performance distribution, and where 
appropriate responses cannot always be physically achieved by 
a subset of vehicles comprising the traffic stream.  This is one 
area where research would contribute substantially to a better 
understanding of the growth, decay, and frequency of 
disturbances in traffic streams (see, e.g., Harris 1964; Herman 
and Rothery 1967; Lam and Rothery 1970). 

Figure 4.1a 
Block Diagram of Car-Following. 
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Figure 4.1b 
Block Diagram of the Linear Car-Following Model. 

4.2 S t ab ility A n aly s is 

In this section we address the stability of the linear car following 
equation, Equation 4.15, with respect to disturbances.  Two 
particular types of stabilities are examined: local stability and 
asymptotic stability. 

Local Stability is concerned with the response of a following 
vehicle to a fluctuation in the motion of the vehicle directly in 
front of it; i.e., it is concerned with the localized behavior 
between pairs of vehicles. 

Asymptotic Stability is concerned with the manner in which a 
fluctuation in the motion of any vehicle, say the lead vehicle of 
a platoon, is propagated through a line of vehicles. 

The analysis develops criteria which characterize the types of 
possible motion allowed by the model.  For a given range of 
model parameters, the analysis determines if the traffic stream 
(as described by the model) is stable or not, (i.e., whether 
disturbances are damped, bounded, or unbounded).  This is an 
important determination with respect to understanding the 
applicability of the modeling.  It identifies several characteristics 
with respect to single lane traffic flow, safety, and model validity. 
If the model is realistic, this range should be consistent with 
measured values of these parameters in any applicable situation 
where disturbances are known to be stable.  It should also be 
consistent with the fact that following a vehicle is an extremely 
common experience, and is generally stable. 

4.2.1 L o cal S t ab ility 

In this analysis, the linear car following equation, (Equation 
4.15) is assumed.  As before, the position of the lead vehicle and 
the following vehicle at a time, t, are denoted by x  (t) and x  (t),

� f

respectively.  Rescaling time in units of the response time, T,
using the transformation, t = �T, Equation 4.15 simplifies to 

. (4.16) 
�ẍf(��1) C[(x

.
(�)�x f(�))]

�

where C = �T.  The conditions for the local behavior of the 
following vehicle can be derived by solving Equation 4.16 by the 
method of Laplace transforms (Herman et al. 1959).

The evaluation of the inverse Laplace transform for Equation 
4.16 has been performed (Chow 1958; Kometani and Sasaki 
1958).  For example, for the case where the lead and following 
vehicles are initially moving with a constant speed, u, the 
solution for the speed of the following vehicle was given by 
Chow where � denotes the integral part of t/T. The complex 
form of Chow's solution makes it difficult to describe various 
physical properties (Chow 1958). 

v�n t

�
n�� ����(n��)T��n���1

� (u0(t��)�u)dtx� (t) � u�� (�1)�n
(n��)T (n�1)!�!��0
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However, the general behavior of the following vehicle's motion 
can be characterized by considering a specific set of initial 
conditions. Without any loss in generality, initial conditions are 
assumed so that both vehicles are moving with a constant speed, 
u.  Then using a moving coordinate system z(t) for both the lead 
and following vehicles the formal solution for the  acceleration 
of the following vehicle is given more simply by: 

L �1[C(C se s)�1s (4.16a) �

where L-1 denotes the inverse Laplace transform.  The character 
of the above inverse Laplace transform is determined by the 

2singularities of the factor (C + se )s -1    since Cs Z (s) is a regular 
�

function.  These singularities in the finite plane are the simple 
poles of the roots of the equation 

� �C se s 0 (4.17) 

Similarly, solutions for vehicle speed and inter-vehicle spacings 
can be obtained.  Again, the behavior of the inter-vehicle spacing 
is dictated by the roots of Equation 4.17.  Even for small t, the 
character of the solution depends on the pole with the largest real 
part, say , s  = a 0 + ib , since all other poles have considerably 0  0 

larger negative real parts so that their contributions are heavily 
damped. 

Hence, the character of the inverse Laplace transform has the 
tb0tform e

a0t e .  For different values of C, the pole with the 
largest real part generates four  distinct cases: 

a) if C � e �1(�0.368), then a0�0, b0�0 , and the 
motion is non-oscillatory and exponentially 
damped. 

b) if e- 1 < C < � / 2, then  a < 0, b0 0  > 0 and the 
motion is oscillatory with exponential damping. 

c) if C = � / 2 , then a  = 0, b ,0 0   > 0 and the motion is 
oscillatory with constant amplitude. 

d) if C > � / 2  then a  > 0, b0 0   > 0 and the motion is 
oscillatory with increasing amplitude. 

The above establishes criteria for the numerical values of C
which characterize the motion of the following vehicle.  In 

particular, it demonstrates that in order for the following vehicle
not to over-compensate to a fluctuation, it is necessary that C
�1/e.  For values of C that are somewhat greater, oscillations 
occur but are heavily damped and thus insignificant.    Damping 
occurs  to some  extent  as  long as 
C < �/2. 

e

These results concerning the oscillatory and non-oscillatory 
behavior apply to the speed and acceleration of the following 
vehicle as well as to the inter-vehicle spacing.  Thus, e.g., if C �

-1, the inter-vehicle spacing changes in a non-oscillatory manner 
by the amount  �S , where 

1
�S � (V�U) (4.18) 

�

when the speeds of the vehicle pair changes from U to V. An 
important case is when the lead vehicle stops.  Then, the final 
speed, V, is zero, and the total change in inter-vehicle spacing is 
- U/ �.

In order for a following vehicle to avoid a 'collision' from 
initiation of a fluctuation in a lead vehicle's speed the inter-
vehicle spacing should be at least as large as U/�. On the other 
hand, in the interests of traffic flow the inter-vehicle spacing 
should be small by having � as large as possible and yet within 

-1the stable limit.  Ideally, the best choice of �  is (eT) .

The result expressed in Equation 4.18 follows directly from 
Chow's solution (or more simply by elementary considerations). 
Because the initial and final speeds for both vehicles are U and 
V, respectively, we have 

ẍf(t�T)dt V�U (4.19) ��0

�

and from Equation 4.15 we have 

.
��

� [x
.

l(t)�xf(t)]dt � �S
0

or

x�S � �
� [ � (t)�x

.
f(t)]dt V�U (4.20) �

�
0 �
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as given earlier in Equation 4.18. 

In order to illustrate the general theory of local stability, the 
results of several calculations using a Berkeley Ease analog 
computer and an IBM digital computer are described.  It is 
interesting to note that in solving the linear car following 
equation for two vehicles, estimates for the local stability 
condition were first obtained using an analog computer for 
different values of C which differentiate the various type of 
motion. 

Figure 4.2 illustrates the solutions for C= e-1, where the lead 
vehicle reduces its speed and then accelerates back to its original 
speed.    Since C  has  a value for  the locally stable limit, the 
acceleration and speed of the following vehicle, as well as the 
inter-vehicle spacing between the two vehicles are non-
oscillatory. 

In Figure 4.3, the inter-vehicle spacing is shown for four other 
values of C for the same fluctuation of the lead vehicle as shown 
in Figure 4.2.  The values of C range over the cases of oscillatory 

-1Note: Vehicle 2 follows Vehicle 1 (lead car) with a time lag T=1.5 sec and a value of C=e (�0.368), the limiting value for local 
stability.  The initial velocity of each vehicle is u 

Figure 4.2 
Detailed Motion of Two Cars Showing the 

Effect of a Fluctuation in the Acceleration of the Lead Car (Herman et al. 1958). 
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Note: Changes in car spacings from an original constant spacing between two cars for the noted values of C.  The a cceleration 
profile of the lead car is the same as that shown in Figure 4.2. 

Figure 4.3 
Changes in Car Spacings from an 

Original Constant Spacing Between Two Cars (Herman et al. 1958). 

motion where the amplitude is damped, undamped, and of inter-vehicle spacing.  For m = 1, we obtain the linear car 
increasing amplitude. following equation. 

For the values of C = 0.5 and 0.80, the spacing is oscillatory and Using the identical analysis for any m,  the equation whose roots 
heavily damped.  determine the character of the motion which results from 

�For C = 1.57 ( � ), Equation 4.21 is 
2

the spacing oscillates with constant amplitude. For C = 1.60, the me s
�C� s 0 (4.22) 

motion is oscillatory with increasing amplitude. 

Local Stability with Other Controls.  Qualitative arguments can 
be given of a driver's lack of sensitivity to variation in relative 
acceleration or higher derivatives of inter-vehicle spacings 
because of the inability to make estimates of such quantities.  It 
is of interest to determine whether a control centered around 
such derivatives would be locally stable.  Consider the car 
following equation of the form 

None of these roots lie on the negative real axis when m is even, 
therefore, local stability is possible only for odd values of the 
mth derivative of spacing: relative speed, the first derivative of 
relative acceleration (m = 3), etc.  Note that this result indicates 
that an acceleration response directly proportional to inter-
vehicle spacing stimulus is unstable. 

d m 
ẍf(��1) C � [x (�)�xf(�)] (4.21) 4.2.2 A s y m p t o t ic S t ab ility 

dt m �

In the previous analysis, the behavior of one vehicle following 
another was considered.  Here a platoon of vehicles (except for 

for m= 0,1,2,3..., i.e., a control where the acceleration of the the platoon leader) follows the vehicle ahead according to the 
following vehicle is proportional to the mth derivative of the 
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linear car following equation, Equation 4.15.  The criteria 
necessary for asymptotic stability or instability were first 
investigated by considering the Fourier components of the speed 
fluctuation of a platoon leader (Chandler et al. 1958).

The set of equations which attempts to describe a line of N
identical car-driver units is: 

�ẍn�1(t�T) �[ �n(t)� �x xn�1(t)] (4.23) 

where n =0,1,2,3,...N.

Any specific solution to these equations depends on the velocity 
profile of the lead vehicle of the platoon, u (t), and the two0

parameters � and T. For any inter-vehicle spacing, if a 
disturbance grows in amplitude then a 'collision' would 
eventually occur somewhere back in the line of vehicles. 

While numerical solutions to Equation 4.23 can determine at 
what point such an event would occur, the interest is to 
determine criteria for the growth or decay of such a disturbance. 
Since an arbitrary speed pattern can be expressed as a linear 
combination of monochromatic components by Fourier analysis, 
the specific profile of a platoon leader can be simply represented 
by one component, i.e., by a constant together with a 
monochromatic oscillation with frequency, �  and amplitude, fo

, i.e., 

�u (t) ao� f e i�t (4.24) o o

and the speed profile of the nth vehicle by 

�u (t) ao� f e i�t (4.25) n n

Substitution of Equations 4.24 and 4.25 into Equation 4.23 
yields: 

�u (t) ao�F(�,�,�,n)e i�(�,�,�,n) (4.26) n

where the amplitude factor F (�, �, �, n) is given by 

[1�(�)2
�2(� )sin(��)]�n/2

� �

which decreases with increasing n if 

1�(� )2
�2(�)sin(��) >  1  

� �

i.e. if

� > 2sin(��)
�

The severest restriction on the parameter � arises from the low 
frequency range, since in the limit as � � 0, �  must satisfy the 
inequality 

1
�� < [lim

��0(��)/sin(��)] (4.27) 
2

Accordingly, asymptotic stability is insured for all frequencies 
where this inequality is satisfied.  

For those values of � within the physically realizable frequency 
range of vehicular speed oscillations, the right hand side of the 
inequality of 4.27 has a short range of values of 0.50 to about 
0.52. The asymptotic stability criteria divides the two parameter 
domain into stable and unstable regions, as graphically 
illustrated in Figure 4.4. 

The criteria for local stability (namely that no local oscillations 
-1occur when ��� e ) also insures asymptoticstability.  It has also 

been shown (Chandler et al. 1958) that a speed fluctuation can 
be approximated by: 

4�n 1 �½
x

�1(t)�u0(t) �
Tn

� 2�
(4.28) [t�n/�]

� exp
4n/�(1/2���)

Hence, the speed of propagation of the disturbance with respect 
to the moving traffic stream in number of inter-vehicle 
separations per second, n/t, is �.

That is, the time required for the disturbance to propagate 
between pairs of vehicles is �-1, a constant, which is independent 
of the response time T.  It is noted from the above equation that 
in the propagation of a speed fluctuation the amplitude of the 
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Figure 4.4 
Regions of Asymptotic Stability (Rothery 1968). 

disturbance grows as the response time, T, approaches  1/(2�)
 until instability is reached.  Thus, while 
�T < 0.5 ensures stability, short reaction times increase the range 
of the sensitivity coefficient, �, that ensures stability.  From a 
practical viewpoint, small reaction times also reduce relatively 
large responses to a given stimulus, or in contrast, larger 
response times require relatively large responses to a given 
stimulus.  Acceleration fluctuations can be correspondingly 
analyzed (Chandler et al. 1958). 

4.2. 1. 1 Nu m e ri cal E xam p l es 

In order to illustrate the general theory of asymptotic stability as 
outlined above,  the results of a number of numerical calculations 
are given.  Figure 4.5 graphically exhibits the inter-vehicle 
spacings of successive pairs of vehicles versus time for a platoon 
of vehicles.  Here, three values of C were used:  C = 0.368, 0.5, 
and 0.75.  The initial fluctuation of the lead vehicle, n = 1, was 
the same as that of the lead vehicle illustrated in Figure 4.2. This 
disturbance consists of a slowing down and then a speeding up 
to the original speed so that the integral of acceleration over time 
is zero.  The particularly stable, non-oscillatory response is 
evident in the first case where  C = 0.368 (�1/e), the local 
stability limit. As analyzed, a heavily damped oscillation occurs 
in the second case where C = 0.5, the asymptotic limit.  Note that 
the amplitude of the disturbance is damped as it propagates 

through the line of vehicles even though this case is at the 
asymptotic limit.  

This results from the fact that the disturbance is not a single 
Fourier component with near zero frequency.  However, 
instability is clearly exhibited in the third case of Figure 4.5 
where C = 0.75 and in Figure 4.6 where C = 0.8.  In the case 
shown in Figure 4.6, the trajectories of each vehicle in a platoon 
of nine are graphed with respect to a coordinate system moving 
with the initial platoon speed u. Asymptotic instability of a 
platoon of nine cars is illustrated for the linear car following 
equation, Equation 4.23, where C = 0.80.  For t = 0, the vehicles 
are all moving with a velocity u and are separated by a distance 
of 12 meters. The propagation of the disturbance, which can be 
readily discerned, leads to "collision" between the 7th and 8th 
cars at about t = 24 sec.    The lead vehicle at t = 0 decelerates 
for 2 seconds at 4 km/h/sec, so that its speed changes from u to
u -8 km/h and then accelerates back to u. This fluctuation in the 
speed of the lead vehicle propagates through the platoon in an 
unstable manner with the inter-vehicle  spacing  between the 
seventh and eighth vehicles being reduced to zero at about 24.0 
sec after the initial phase of the disturbance is generated by the 
lead vehicle of the platoon. 

In Figure 4.7 the envelope of the minimum spacing that occurs 
between successive pairs of vehicles is graphed versus time 

� � ��



�� �����������������	�
�

Note: Diagram uses Equation 4.23 for three values of C. The fluctuation in acceleration of the lead car, car number 1, is the 
same as that shown in Fig. 4.2 At t=0 the cars are separated by a spacing of 21 meters. 

Figure 4.5 
Inter-Vehicle Spacings of a Platoon of Vehicles 

Versus Time for the Linear Car Following Model (Herman et al. 1958). 

where the lead vehicle's speed varies sinusoidally with a point. Here, the numerical solution yields a maximum and 
frequency � =2�/10 radian/sec. The envelope of minimum minimum amplitude that is constant to seven significant places. 
inter-vehicle spacing versus vehicle position is shown for three 
values of �.  The response time, T, equals 1 second.  It has been 
shown that the frequency spectrum of relative speed and 4. 2. 1. 2 Next-Nearest V e h i cl e Co u p l i n g 
acceleration in car following experiments have essentially all 
their content below this frequency (Darroch and Rothery 1973). In the nearest neighbor vehicle following model, the motion of 

each vehicle in a platoon is determined solely by the motion of 
The values for the parameter � were 0.530, 0.5345, and the vehicle directly in front. The effect of including the motion 
0.550/sec.  The value for the time lag, T, was 1 sec in each case. of the "next nearest neighbor" vehicle (i.e., the car which is two 
The frequency  used  is  that value of �  which just  satisfies vehicles ahead in addition to the vehicle directly in front) can be 
the stability  equation, Equation 4.27,  for  the case where ascertained. An approximation to this type of control, is the 
�= 0.5345/sec. This latter figure serves to demonstrate not only model 
the stability criteria as a function of frequency but the accuracy 

n̈�2(t��) � x x x (t)� �of the numerical results. A comparison between that which is x �1[ �n�1(t)� �n�2(t)]��2[ �n xn�2] (4.29) 
predicted from the stability analysis and the numerical solution 
for the constant amplitude case (�=0.5345/sec) serves as a check 
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Note:  Diagram illustrates the linear car following equation, eq. 4.23, where C=080. 

Figure 4.6 
Asymptotic Instability of a Platoon of Nine Cars (Herman et al. 1958). 

Figure 4.7 
Envelope of Minimum Inter-Vehicle Spacing Versus Vehicle Position (Rothery 1968).
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(�1��2)� < 1(��)/sin(��)] (4.30) 
2

which in the limit �� 0 is 

4.3 Steady-State Flow 

This section discusses the properties of steady-state traffic flow 
based on car following models of single-lane traffic flow. In 
particular, the associated speed-spacing or equivalent speed-
concentration relationships, as well as the flow-concentration 
relationships for single lane traffic flow are developed. 

The Linear Case. The equations of motion for a single lane of 
traffic described by the linear car following model are given by: 

�ẍn�1(t��) �[ �n(t)� �x xn�1(t)] (4.32) 

where n = 1, 2, 3, .... 

In order to interrelate one steady-state to another under this 
control, assume (up to a time t=0) each vehicle is traveling at a 
speed U  and that the inter-vehicle spacing is S . Suppose that i  i 

at t=0, the lead vehicle undergoes a speed change and increases 
or decreases its speed so that its final speed after some time, t, is 
Uf . A specific numerical solution of this type of transition is 
exhibited in Figure 4.8. 

In this example C = �T=0.47 so that the stream of traffic is 
stable, and speed fluctuations are damped.  Any case where the 
asymptotic stability criteria is satisfied assures that each 
following vehicle comprising the traffic stream eventually 
reaches a state traveling at the speed U  .  In the transition from f

a speed U to a speed U  , the inter-vehicle spacing S changes i  f 

from S to S  , where i f 

�Sf Si��
�1(Uf � Ui) (4.33) 

This result follows directly from the solution to the car following 
equation, Equation 4.16a or from Chow (1958).   Equation 4.33 

1(�1��2)� > (4.31) 
2

This equation states that the effect of adding next nearest 
neighbor coupling to the control element is, to the first order, to 
increase �1 to (�  + � ).  This reduces the value that �  can have 1 2 1

and still maintain asymptotic stability. 

also follows from elementary considerations by integration of 
Equation 4.32 as shown in the previous section (Gazis et al. 
1959). This result is not directly dependent on the time lag, T,
except that for this result to be valid the time lag, T, must allow 
the equation of motion to form a stable stream of traffic.  Since 
vehicle spacing is the inverse of traffic stream concentration, k,
the speed-concentration relation corresponding to Equation 4.33 
is: 

�kf
�1 ki

�1
��

�1(Uf�Ui) (4.34) 

The significance of Equations 4.33 and 4.34 is that: 

1) They link an initial steady-state to a second arbitrary 
steady-state, and 

2) They establish relationships between macroscopic traffic 
stream variables involving a microscopic car following 
parameter, � . 

In this respect they can be used to test the applicability of the car 
following model in describing the overall properties of single 
lane traffic flow. For stopped traffic, Ui = 0, and the 
corresponding spacing, So, is composed of vehicle length and 
"bumper-to-bumper" inter-vehicle spacing. The concentration 
corresponding to a spacing, S , is denoted by k j and is frequently o

referred to as the 'jam concentration'. 

Given k,j then Equation 4.34 for an arbitrary traffic state defined 
by a speed, U, and a concentration, k, becomes 
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Note:  A numerical solution to Equation 4.32 for the inter-vehicle spacings of an 11- vehicle platoon going from one steady-sta te to 
another (�T = 0.47).  The lead vehicle's speed decreases by 7.5 meters per second. 

Figure 4.8 
Inter-Vehicle Spacings of an Eleven Vehicle Platoon (Rothery 1968). 

versus a normalized concentration together with the 
corresponding theoretical steady-state result derived from 

U � �(k �1
�kj

�1) (4.35) Equation 4.35, i.e., 

� �q Uk �(1� k

A comparison of this relationship was made (Gazis et al. 1959) kj

) (4.36) 

with a specific set of reported observations (Greenberg 1959) for 
a case of single lane traffic flow (i.e., for the northbound traffic 
flowing through the Lincoln Tunnel which passes under the The inability of Equation 4.36 to exhibit the required qualitative
Hudson River between the States of New York and New Jersey). relationship between flow and concentration (see Chapter 2) led 
This comparison is reproduced in Figure 4.9 and leads to an to the modification of the linear car following equation (Gazis et 
estimate of 0.60 sec -1 for �. This estimate of � implies an upper al. 1959). 
bound for T � 0.83 sec for an asymptotic stable traffic stream 
using this facility. Non-Linear Models.  The linear car following model specifies 

an acceleration response which is completely independent of 
While this fit and these values are not unreasonable, a vehicle spacing (i.e., for a given relative velocity, response is the 
fundamental problem is identified with this form of an equation same whether the vehicle following distance is small [e.g., of the 
for a speed-spacing relationship (Gazis et al. 1959).  Because it order of 5 or 10 meters] or if the spacing is relatively  large [i.e., 
is linear, this relationship does not lead to a reasonable of the order of hundreds of meters]).  Qualitatively, we would 
description of traffic flow.  This is illustrated in Figure 4.10 expect that response to a given relative speed to increase with 
where the same data from the Lincoln Tunnel (in Figure 4.9) is smaller spacings. 
regraphed.  Here the graph is in the form of a normalized flow, 
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Note: The data are those of (Greenberg 1959) for the Lincoln Tunnel.  The curve represents a "least squares fit" of Equation 4.35 
to the data. 

Figure 4.9 
Speed (miles/hour) Versus Vehicle Concentration (vehicles/mile).(Gazis et al. 1959). 

Note: The curve corresponds to Equation 4.36 where the parameters are those from the "fit" shown in Figure 4.9.

 Figure 4.10 
Normalized Flow Versus Normalized Concentration (Gazis et al. 1959). 
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In order to attempt to take this effect into account, the linear 
model is modified by supposing that the gain factor, �, is not a 
constant but is inversely proportional to vehicle spacing, i.e., 

� � �1 /S(t) � �1 /[x (t)�xn�1(t)] (4.37) n

where �1 is a new parameter - assumed to be a constant and 
which shall be referred to as the sensitivity coefficient.  Using 
Equation 4.37 in Equation 4.32, our car following equation is: 

�1ẍn�1(t��) � [ �n(t)� �x xn�1(t)] (4.38) 
[xn(t)�xn�1(t)]

for n = 1,2,3,... 

As before, by assuming the parameters are such that the traffic 
stream is stable, this equation can be integrated yielding the 
steady-state relation for speed and concentration:

�u �1ln (kj /k) (4.39) 

 and for steady-state flow and concentration:

�q �1kln(kj /k) (4.40) 

 where again it is assumed that for u=0, the spacing is equal to 
-1an effective vehicle length, L = k . These relations for steady-

state flow are identical to those obtained from considering the 
traffic stream to be approximated by a continuous compressible 
fluid (see Chapter 5) with the property that disturbances are 
propagated with a constant speed with respect to the moving 
medium (Greenberg 1959).   For our non-linear car following 
equation, infinitesimal disturbances are propagated with speed 
�1 . This is consistent with the earlier discussion regarding the 
speed of propagation of a disturbance per vehicle pair. 

It can be shown that if the propagation time, �0, is directly 
proportional to spacing (i.e., � � S), Equations 4.39 and 4.40 0

are obtained where the constant ratio S /� is identified as the o

constant �l.

These two approaches are not analogous.  In the fluid analogy 
case, the speed-spacing relationship is 'followed' at every instant 
before, during, and after a disturbance.  In the case of car 
following during the transition phase, the speed-spacing, and 

therefore the flow-concentration relationship, does not describe 
the state of the traffic stream. 

A solution to any particular set of equations for the motion of a 
traffic stream specifies departures from the steady-state.  This is 
not the case for simple headway models or hydro-dynamical 
approaches to single-lane traffic flow because in these cases any 
small speed change, once the disturbance arrives, each vehicle 
instantaneously relaxes to the new speed, at the 'proper' spacing. 

This emphasizes the shortcoming of these alternate approaches. 
They cannot take into account the behavioral and physical 
aspects of disturbances.  In the case of car following models, the 
initial phase of a disturbance arrives at the nth vehicle 
downstream from the vehicle initiating the speed change at a 
time (n-1)T seconds after the onset of the fluctuation.  The time 
it takes vehicles to reach the changed speed depends on the 
parameter  �, for the linear model, and � ,  for  the  non-linear 1

model, subject  to the restriction  that �-1 > T or �1 < S/T,
respectively. 

These restrictions assure that the signal speed can never precede 
the initial phase speed of a disturbance.  For the linear case, the 
restriction is more than satisfied for an asymptotic stable  traffic
 stream.  For small speed changes, it is also satisfied for the non-
linear model  by assuming that the stability criteria results for the 
linear case yields a bound for the stability in the non-linear case.
 Hence, the inequality �� /S*<0.5  provides a sufficient stability 
condition for the non-linear case, where S* is the minimum 
spacing occurring during a transition from one steady-state to 
another. 

Before discussing a more general form for the sensitivity 
coefficient (i.e., Equation 4.37), the same reported data 
(Greenberg 1959) plotted in Figures 4.9 and 4.10 are graphed in 
Figures 4.11 and 4.12 together with the steady-state relations 
(Equations 4.39 and 4.40 obtained from the non-linear model, 
Equation 4.38).  The fit of the data to the steady-state relation via 
the method of "least squares" is good and the resulting values for 
�1 and k  j  are 27.7 km/h and 142 veh/km, respectively. 
Assuming that this data is a representative sample of this 
facility's traffic, the value of 27.7 km/h is an estimate not only of 
the sensitivity coefficient for the non-linear car following model 
but it is the 'characteristic speed' for the roadway under 
consideration (i.e., the speed of the traffic stream which 
maximizes the flow). 
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Note:  The curve corresponds to a "least squares" fit of Equation 4.39 to the data (Greenberg 1959). 

Figure 4.11 
Speed Versus Vehicle Concentration (Gazis et al. 1959). 

Note: The curve corresponds to Equation 4.40 where parameters are those from the "fit" obtained in Figure 4.11. 

Figure 4.12 
Normalized Flow Versus Normalized Vehicle Concentration (Edie et al. 1963). 
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The corresponding vehicle concentration at maximum flow, i.e., 
-lwhen u = �1 , is e  kj. This  predicts  a roadway  capacity  of 

-l� e kj of about �1400 veh/h for the Lincoln Tunnel.  A noted 1

undesirable property of Equation 4.40 is that the tangent dq/dt 
is infinite at k = 0, whereas a linear relation between flow and 
concentration would more accurately describe traffic near zero 
concentration.  This is not a serious defect in the model since car 
following models are not applicable for low concentrations 
where spacings are large and the coupling between vehicles are 
weak.  However, this property of the model did suggest the 
following alternative form (Edie 1961) for the gain factor, 

.
� � �2xn�1(t��)/[x (t)�xn�1(t)]

2
n

This leads to the following expression for a car following model: 

.
. (4.41) 

ẍn�1(t��)�
�2xn�1(t��)

[x
.

n(t)�xn�1(t)]
[xn(t)�xn�1(t)]

2

As before, this can be integrated giving the following steady-
state equations: 

�U Uf e
�k/km (4.42) 

and 

�q Uf ke �k/km (4.43) 

where  Uf is the "free mean speed", i.e., the speed of the traffic 
stream near zero concentration and k   is the concentration when m

the flow is a maximum.  In this case the sensitivity coefficient, �2
-1can be identified as k -1. The speed at optimal flow is e Um f

which, as before, corresponds to the speed of propagation of a 
disturbance with respect to the moving traffic stream.  This 
model predicts a finite speed, Uf , near zero concentration. 

Ideally, this speed concentration relation should be translated to 
the right in order to more completely take into account 
observations that the speed of the traffic stream is independent 
of vehicle concentration for low concentrations, .i.e. 

U Uf for 0�k�kf (4.44) �

and 

k � kfU Uf exp �� (4.45) 
km

where  kf corresponds to a concentration where vehicle to 
vehicle interactions begin to take place so that the stream speed 
begins to decrease with increasing concentration. Assuming that 
interactions take place at a spacing of about 120 m, k wouldf

have a value of about 8 veh/km.  A "kink" of this kind was 
introduced into a linear model for the speed concentration 
relationship (Greenshields 1935). 

Greenshields' empirical model for a speed-concentration relation 
is given by 

�U Uf (1�k/kj) (4.46) 

where Uf   is a “free mean speed” and kj is the jam concentration. 

It is of interest to question what car following model would 
correspond to the above steady-state equations as expressed by 
Equation 4.46.  The particular model can be derived in the 
following elementary way (Gazis et al. 1961).  Equation 4.46 is 
rewritten as 

�U Uf (1�L/S) (4.47) 

Differentiating both sides with respect to time obtains 

�

�U (Uf L/S 2)S� (4.48) 

which after introduction of a time lag is for the (n+1) vehicle: 

Uf L
� [ �n(t)� �ẍn�1(t��)

[xn(t)�xn�1(t)]
2

x xn�1(t)] (4.49) 
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The gain factor is: 

Uf L

[xn(t)�xn�1(t)]
2 (4.50) 

The above procedure demonstrates an alternate technique at 
arriving at stimulus response equations from relatively 
elementary considerations.  This method was used to develop 
early car following models (Reuschel 1950; Pipes 1951). The 
technique does pre-suppose that a speed-spacing relation reflects 
detailed psycho-physical aspects of how one vehicle follows 
another.  To summarize the car-following equation considered, 
we have: 

�ẍn�1(t��) �[ �n(t)� �x xn�1(t)] (4.51) 

where the factor, �, is assumed to be given by the following: 

� A constant, � = �0;
� A term inversely proportional to the spacing, � = �1/S;
� A term proportional to the speed and inversely 

2proportional to the spacing squared, � = � U/S ; and2

� A term inversely proportional to the spacing squared, 
2� = �3 / S .

These models can be considered to be special cases of a more 
general expression for the gain factor, namely: 

m
�� � a xn�1(t��)/[x (t)�xn�1(t)]

� (4.52) 
�,m n

where a is a constant to be determined experimentally.  Model
�,m

specification is to be determined on the basis of the degree to 
which it presents a consistent description of actual traffic 
phenomena. Equations 4.51 and 4.52 provide a relatively broad 
framework in so far as steady-state phenomena is concerned 
(Gazis et al. 1961). 

Using these equations and integrating over time we have 

�f (U) a � fl(S)�b (4.53) m

where, as before, U is the steady-state speed of the traffic stream, 
S is the steady-state spacing, and  a and b are appropriate 

constants consistent with the physical restrictions and where 
f (x), (p = m  or �), is given by p

fp(x) x 1�p (4.54) �

for p � 1 and 

f (x) �nx (4.55) �p

for p = 1.  The integration constant b is related to the "free mean 
speed" or the "jam concentration" depending on the specific 
values of m and �. For m > 1, �� 1, or m =1, � >1 

�b f (Uf ) (4.56) m

and 

b afl(L) (4.57) � �

for  all  other  combinations of m  and   �, except  �  < 1  and 
m = 1. 

For those cases where � < 1 and m = 1 it is not possible to satisfy 
either the boundary condition at k = 0 or kj and the integration 
constant can be assigned arbitrarily, e.g., at km, the concentration 
at maximum flow or more appropriately at some 'critical' 
concentration near the boundary condition of a "free speed" 
determined by the "kink" in speed-concentration data for the 
particular facility being modeled.  The relationship between km

and kj is a characteristic of the particular functional or model 
being used to describe traffic flow of the facility being studied 
and not the physical phenomenon involved. For example, for the 
two models given by � = 1, m = 0, and  � = 2, m = 0, maximum 

-lflow occurs at a concentration of e  kj and  k  /  2 , respectively. j

Such a result is not physically unrealistic.  Physically the 
question is whether or not the measured value of q  occurs at max 

-1or near the numerical value of these terms, i.e., km = e kj or k /2j

for the two examples cited. 

Using Equations 4.53, 4.54, 4.55, 4.56, 4.57, and the definition 
of steady-state flow, we can obtain the relationships between 
speed, concentration, and flow.  Several examples have been 
given above.   Figures 4.13 and 4.14 contain these and additional 
examples of flow versus concentration relations for various 
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Note: Normalized flow versus normalized concentration corresponding to the steady-state solution of Equations 4.51 and 4.52 
for m=1 and various values of �.

Figure 4.13 
Normalized Flow Versus Normalized Concentration (Gazis et al. 1963). 

Figure 4.14 
Normalized Flow versus Normalized Concentration Corresponding to the Steady-State 

Solution of Equations 4.51 and 4.52 for m=1 and Various Values of �� (Gazis 1963). 
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values of � and m. These flow curves are normalized by letting 
q  = q/q , and kn = k/k . n max j

It can be seen from these figures that most of the models shown 
here reflect the general type of flow diagram required to agree 
with the qualitative descriptions of steady-state flow.  The 
spectrum of models provided are capable of fitting data like that 
shown in Figure 4.9 so long as a suitable choice of the 
parameters is made. 

The generalized expression for car following models, Equations 
4.51 and 4.52, has also been examined for non-integral values 
for m and � (May and Keller 1967).  Fittingdata obtained on the 
Eisenhower Expressway in Chicago they proposed a model with 
m = 0.8 and � = 2.8.  Various values for m and � can be identified 
in the early work on steady-state flow and car following . 

The case m = 0, � = 0 equates to the "simple" linear car following 
model.  The case m = 0, � = 2 can be identified with a model 
developed from photographic observations of traffic flow made 
in 1934 (Greenshields 1935). This model can also be developed 

4.4  Experiments And Observations 

This section is devoted to the presentation and discussion of 
experiments that have been carried out in an effort to ascertain 
whether car following models approximate single lane traffic 
characteristics. These experiments are organized into two 
distinct categories. 

The first of these is concerned with comparisons between car 
following models and detailed measurements of the variables 
involved in the driving situation where one vehicle follows 
another on an empty roadway.  These comparisons lead to a 
quantitative measure of car following model estimates for the 
specific parameters involved for the traffic facility and vehicle 
type used. 

The second category of experiments are those concerned with 
the measurement of macroscopic flow characteristics: the study 
of speed, concentration, flow and their inter-relationships for 
vehicle platoons and traffic environments where traffic is 
channeled in a single lane.  In particular, the degree to which this 
type of data fits the analytical relationships that have been 

considering the perceptual factors that are related to the car 
following task (Pipes and Wojcik 1968; Fox and Lehman 1967; 
Michaels 1963).  As was discussed earlier, the case for m = 0, 
� = 1 generates a steady-state relation that can be developed bya 
fluid flow analogy to traffic  (Greenberg  1959) and  led  to the 
reexamination of car following experiments and the hypothesis 
that drivers do not have a constant gain factor to a given relative-
speed stimulus but  rather that it varies inversely with the vehicle 
spacing, i.e., m= 0, � =1 (Herman et al. 1959).  A generalized 
equation for steady-state flow (Drew 1965) and subsequently 
tested on the Gulf Freeway in Houston, Texas led to a model 
where m = 0 and � = 3/2. 

As noted earlier, consideration of a "free-speed" near low 
concentrations led to the proposal and subsequent testing of the 
model  m = 1, � = 2  (Edie 1961).    Yet another model, m = 1, 
� = 3 resulted from analysis of data obtained on the Eisenhower 
Expressway in Chicago (Drake et al. 1967).  Further analysis of 
this model together with observations suggest that the sensitivity 
coefficient may take on different values above a lane flow of 
about 1,800 vehicles/hr (May and Keller 1967). 

derived from car following models for steady-state flow are 
examined. 

Finally, the degree to which any specific model of the type 
examined in the previous section is capable of representing a 
consistent framework from both the microscopic and 
macroscopic viewpoints is examined. 

4.4.1 Car Following Experiments 

The first experiments which attempted to make a preliminary 
evaluation of the linear car following model were performed a 
number of decades ago (Chandler et al. 1958; Kometani and 
Sasaki 1958).  In subsequent years a number of different tests 
with varying objectives were performed using two vehicles, 
three vehicles, and buses.  Most of these tests were conducted on 
test track facilities and in vehicular tunnels. 
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In these experiments, inter-vehicle spacing, relative speed, speed 5) Miscellaneous Experiments.  Several additional car 
of the following vehicle, and acceleration of the following following experiments have been performed and reported 
vehicles were recorded simultaneously together with a clock on as follows: 
signal to assure synchronization of each variable with every 
other. a) Kometani and Sasaki Experiments.  Kometani and  

Sasaki conducted and reported on a series of experiments 
These car following experiments are divided into six specific that were performed to evaluate the effect of an additional 
categories as follows: term in the linear car following equation.  This term is 

related to the acceleration of the lead vehicle.  In 
1) Preliminary Test Track Experiments. The first particular, they investigated a model rewritten here in the 

experiments in car following were performed by (Chandler following form: 
et al. 1958) and were carried out in order to obtain 
estimates of the parameters in the linear car following 

ẍn�1(t��) � �[ �xn(t)� �xn�1(t)]��ẍn(t) (4.58) 

model and to obtain a preliminary evaluation of this model. 
Eight male drivers participated in the study which was This equation attempts to take into account a particular 
conducted on a one-mile test track facility. driving phenomenon, where the driver in a particular state 

realizes that he should maintain a non-zero acceleration 
2) Vehicular Tunnel Experiments. To further establish the even though the relative speed has been reduced to zero or 

validity of car following models and to establish estimates, near zero. This situation was observed in several cases in 
the parameters involved in real operating environments tests carried out in the vehicular tunnels - particularly 
where the traffic flow characteristics were well known, a when vehicles were coming to a stop.  Equation 4.58 
series of experiments were carried out in the Lincoln, above allows for a non-zero acceleration when the relative 
Holland, and Queens Mid-Town Tunnels of New York speed is zero. A value of � near one would indicate an 
City. Ten different drivers were used in collecting 30 test attempt to nearly match the acceleration of the lead driver 
runs. for such cases.  This does not imply that drivers are good 

estimators of relative acceleration.  The conjecture here is 
3) Bus Following Experiments.  A series of experiments that by pursuing the task where the lead driver is 

were performed to determine whether the dynamical undergoing a constant or near constant acceleration 
characteristics of a traffic stream changes when it is maneuver, the driver becomes aware of this qualitatively 
composed of vehicles whose performance measures are after nullifying out relative speed - and thereby shifts the 
significantly different than those of an automobile.  They frame of reference.  Such cases have been incorporated 
were also performed to determine the validity and measure into models simulating the behavior of bottlenecks in 
parameters of car following models when applied to heavy tunnel traffic (Helly 1959).
vehicles.  Using a 4 kilometer test track facility and 53-
passenger city buses, 22 drivers were studied. b) Experiments of Forbes et al.  Several experiments 

using  three  vehicle  platoons  were reported by Forbes 
4) Three Car Experiments.  A series of experiments were et al. (1957). Here a lead vehicle was driven by one of the 

performed to determine the effect on driver behavior when experimenters while the second and third vehicles were 
there is an opportunity for next-nearest following and of driven by subjects.   At predetermined locations along the 
following the vehicle directly ahead.  The degree to which roadway relatively severe acceleration maneuvers were 
a driver uses the information that might be obtained from executed by the lead vehicle.  Photographic equipment 
a vehicle two ahead was also examined.  The relative recorded these events with respect to this moving 
spacings and the relative speeds between the first and third reference together with speed and time.  From these 
vehicles and the second and third vehicles together with recordings speeds and spacings were calculated as a 
the speed and acceleration of the third vehicle were function of time.  These investigators did not fit this data 
recorded. to car following models.  However, a partial set of this data 

was fitted to vehicle following models by another 
investigator (Helly 1959).  This latter set consisted of six 
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tests in all, four in the Lincoln Tunnel and two on an 
open roadway. 

c) Ohio State Experiments.  Two different sets of 
experiments have been conducted at Ohio State 
University. In the first set a series of subjects have been 
studied using a car following simulator (Todosiev 1963).
An integral part of the simulator is an analog computer 
which could program the lead vehicle for many different 
driving tasks.  The computer could also simulate the 
performance characteristics of different following vehicles. 
These experiments were directed toward understanding the 
manner in which the following vehicle behaves when the 
lead vehicle moves with constant speed and the 
measurement of driver thresholds for changes in spacing, 
relative speed, and acceleration. The second set of 
experiments were conducted on a level two-lane state 
highway operating at low traffic concentrations (Hankin 
and Rockwell 1967).  In these experiments the purpose 
was "to develop an empirically based model of car 
following which would predict a following car's 
acceleration and change in acceleration as a function of 
observed dynamic relationships with the lead car."  As in 
the earlier car following experiments, spacing and relative 
speed were recorded as well as speed and acceleration of 
the following vehicle. 

d) Studies by Constantine and Young.  These studies 
were carried out using motorists in England and a 
photographic system to record the data (Constantine and 
Young 1967).  The experiments are interesting from the 
vantage point that they also incorporated a second 
photographic system mounted in the following vehicle and 
directed to the rear so that two sets of car following data 
could be obtained simultaneously. The latter set collected 
information on an unsuspecting motorist.  Although 
accuracy is not sufficient, such a system holds promise. 

4.4.1.1 Analysis of Car Following Experiments 

The analysis of recorded information from a car following 
experiment is generally made by reducing the data to numerical 
values at equal time intervals.  Then, a correlation analysis is 
carried out using the linear car following model to obtain 
estimates of the two parameters, � and  T. With the data in 
discrete form, the time lag ,T, also takes on discrete values.  The 
time lag or response time associated with a given driver is one 

for which the correlation coefficient is a maximum and typically 
falls in the range of 0.85 to 0.95. 

The results from the preliminary experiments (Chandler et al. 
1958) are summarized in Table 4.1 where the estimates are 
given for �, their product; C = �T, the boundary value for 
asymptotic stability; average spacing, < S >; and average speed, 
< U >. The average value of the gain factor is 0.368 sec .  The 
average value of �T is close to 0.5, the asymptotic stability 
boundary limit. 

Table 4.1 Results from Car-Following Experiment 

Driver �� <U> <S> ��T

1 0.74 sec -1 19.8 
m/sec 

36 
m

1.04 

2 0.44 16 36.7 0.44 

3 0.34 20.5 38.1 1.52 

4 0.32 22.2 34.8 0.48 

5 0.38 16.8 26.7 0.65 

6 0.17 18.1 61.1 0.19 

7 0.32 18.1 55.7 0.72 

8 0.23 18.7 43.1 0.47 

Using the values for � and the average spacing <S > obtained for 
each subject a value of 12.1 m/sec (44.1 km/h) is obtained for an 
estimate of the constant a1, 0 (Herman and Potts 1959).  This 
latter estimate compares the value � for each driver with that 
driver's average spacing, <S > , since each driver is in somewhat 
different driving state. This is illustrated in Figure 4.15.  This 
approach attempts to take into account the  differences in the 
estimates for the gain factor � or a0,0, obtained for different 
drivers by attributing these differences to the differences in their 
respective average spacing.  An alternate and more direct 
approach carries out the correlation analysis for this model using 
an equation which is the discrete form of Equation 4.38 to obtain 
a direct estimate of the dependence of the gain factor on spacing, 
S(t). 

� � ��
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Figure 4.15 
Sensitivity Coefficient Versus the Reciprocal of the Average Vehicle Spacing (Gazis et al. 1959). 

Vehicular Tunnel Experiments.  Vehicular tunnels usually have 
roadbeds that are limited to two lanes, one per direction. 
Accordingly, they consist of single-lane traffic where passing is 
prohibited.  In order to investigate the reasonableness of the non-
linear model a series of tunnel experiments were conducted. 
Thirty test runs in all were conducted: sixteen in the Lincoln 
Tunnel, ten in the Holland Tunnel and four in the Queens Mid-
Town Tunnel.  Initially, values of the parameters for the linear 
model were obtained, i.e., � = a0,0 and T.  These results are 
shown in Figure 4.16 where the gain factor, �= a0,0 versus the 
time lag, T, for all of the test runs carried out in the vehicular 
tunnels.  The solid curve divides the domain of this two 
parameter field into asymptotically stable and unstable regions. 

It is of interest to note that in Figure 4.16 that many of the drivers 
fall into the unstable region and that there are drivers who have 
relatively large gain factors and time lags.  Drivers with 
relatively slow responses tend to compensatingly have fast 
movement times and tend to apply larger brake pedal forces 
resulting in larger decelerations.  

Such drivers have been identified, statistically, as being involved 
more frequently in "struck-from-behind accidents" (Babarik 
1968; Brill 1972).  Figures 4.17 and 4.18 graph the gain factor 

versus the reciprocal of the average vehicle spacing for the tests 
conducted in the Lincoln and Holland tunnels, respectively. 
Figure 4.17, the gain factor, �, versus the reciprocal of the 
average spacing for the Holland Tunnel tests.  The straight line 
is a "least-squares" fit through the origin.  The slope, which is an 
estimate of a ,  and equals 29.21 km/h.  Figure 4.18 graphs the 1 0

gain factor, �, versus the reciprocal of the average spacing for 
the Lincoln Tunnel tests. The straight line is a "least-squares" fit 
through  the  origin.  These results yield characteristic speeds, 

, which are within ± 3km/h for these two similar facilities. a1,0

Yet these small numeric differences for the parameter  al,0 

properly reflect known differences in the macroscopic traffic 
flow characteristics of these facilities. 

The analysis was also performed using these test data and the 
non-linear reciprocal spacing model.  The results are not 
strikingly different (Rothery 1968).  Spacing does not change 
significantly within any one test run to provide a sensitive 
measure of the dependency of the gain factor on inter-vehicular 
spacing for any given driver (See Table 4.2).  Where the 
variation in spacings were relatively large (e.g., runs 3, 11, 13, 
and 14) the results tend to support the spacing dependent model. 
This time-dependent analysis has also been performed for seven 
additional functions  for  the  gain  factor  for the same fourteen 
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Table 4.2 
Comparison of the Maximum Correlations obtained for the Linear and Reciprocal Spacing Models for the Fourteen 
Lincoln Tunnel Test Runs 

Number r0,0 rl,0 <S> (m) ��S (m) Number r0,0 rl,0 <S> (m) ��S (m) 

1 0.686 0.459 13.4 4.2 8 0.865 0.881 19.9 3.4 

2 0.878 0.843 15.5 3.9 9 0.728 0.734 7.6 1.8 

3 0.77 0.778 20.6 5.9 10 0.898 0.898 10.7 2.3 

4 0.793 0.748 10.6 2.9 11 0.89 0.966 26.2 6.2 

5 0.831 0.862 12.3 3.9 12 0.846 0.835 18.5 1.3 

6 0.72 0.709 13.5 2.1 13 0.909 0.928 18.7 8.8 

7 0.64 0.678 5.5 3.2 14 0.761 0.79 46.1 17.6 

Figure 4.16 
Gain Factor, ��, Versus the Time Lag, T, for All of the Test Runs (Rothery 1968). 
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Note: The straight line is a "least-squares" fit through the origin.  The slope, which is an estimate of 1,0, equals 29.21 km/h. 

Figure 4.17 
Gain Factor, ��, Versus the Reciprocal of the 

Average Spacing for Holland Tunnel Tests (Herman and Potts 1959). 

Note: The straight line is a "least-squares" fit through the origin.  The slope, is an estimate of 1,0, equals 32.68 km/h. 

Figure 4.18 
Gain Factor, �� ,Versus the Reciprocal of the 

Average Spacing for Lincoln Tunnel Tests (Herman and Potts 1959). 
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little difference from one model to the other.  There are definite 
trends however. If one graphs the correlation coefficient for a 
given �, say �=1 versus m; 13 of the cases indicate the best fits 
are with m = 0 or 1.  Three models tend to indicate marginal 
superiority; they are those given by (�=2; m=1), (�=1; m=0) and 
(�=2; m=0).

of the cases when that factor is introduced and this model (�=1; 
m=0) provided the best fit to the data. The principle results of 
the analysis are summarized in Figure 4.19 where the sensitivity 
coefficient  a 0,0 versus the time lag, T, for the bus following 
experiments are shown. All of the data points obtained in these 
results fall in the asymptotically stable 

Bus Following Experiments. For each of the 22 drivers tested, 
the time dependent correlation analysis was carried out for the 
linear model (�=0; m=0), the reciprocal spacing model (�=1; 

region, whereas in the previous automobile experiments 
approximately half of the points fell into this region. In Figure 
4.19, the sensitivity coefficient, a , versus the time lag, T, for0,0

m=0), and the speed, reciprocal-spacing-squared model (�=2; the bus following experiments are shown.  Some drivers are 
m=1).  Results similar to the Tunnel analysis were obtained: high represented by more than one test. The circles are test runs by 
correlations for almost all drivers and for each of the three drivers who also participated in the ten bus platoon experiments. 
models examined (Rothery et al. 1964). The solid curve divides the graph into regions of asymptotic 

stability and instability. The dashed lines are boundaries for the 
The correlation analysis provided evidence for the reciprocal regions of local stability and instability. 
spacing effect with the correlation improved in about 75 percent 

Table 4.3 
Maximum Correlation Comparison for Nine Models, a , for Fourteen Lincoln Tunnel Test Runs.

��,m

Driver r(0,0) r(1,-1) r(1,0) r(1,1) r(1,2) r(2,-1) r(2,0) r(2,1) r(2,2) 

1 0.686 0.408 0.459 0.693 0.721 0.310 0.693 0.584 0.690

2 0.878 0.770 0.843 0.847 0.746 0.719 0.847 0.827 0.766

3 0.770 0.757 0.778 0.786 0.784 0.726 0.786 0.784 0.797

4 0.793 0.730 0.748 0.803 0.801 0.685 0.801 0.786 0.808

5 0.831 0.826 0.862 0.727 0.577 0.805 0.728 0.784 0.624

6 0.720 0.665 0.709 0.721 0.709 0.660 0.720 0.713 0.712

7 0.640 0.470 0.678 0.742 0.691 0.455 0.745 0.774 0.718

8 0.865 0.845 0.881 0.899 0.862 0.818 0.890 0.903 0.907

9 0.728 0.642 0.734 0.773 0.752 0.641 0.773 0.769 0.759

10 0.898 0.890 0.898 0.893 0.866 0.881 0.892 0.778 0.865

11 0.890 0.952 0.966 0.921 0.854 0.883 0.921 0.971 0.940

12 0.846 0.823 0.835 0.835 0.823 0.793 0.835 0.821 0.821

13 0.909 0.906 0.923 0.935 0.927 0.860 0.935 0.928 0.936

14 0.761 0.790 0.790 0.771 0.731 0.737 0.772 0.783 0.775
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Note: For bus following experiments - Some drivers are represented by more than one test.  The circles are test runs by drivers 
who also participated in the ten bus platoons experiments.  The solid curve divides the graph into regions of asymptotic stability
and instability.  The dashed lines are boundaries for the regions of local stability and instability.

Figure 4.19 
Sensitivity Coefficient, a0,0 ,Versus the Time Lag, T (Rothery et al. 1964). 

The results of a limited amount of data taken in the rain suggest Figures 4.20 and 4.21 graph the values of a0,0 for all test runs 
-2that drivers operate even more stably when confronted with wet 

road conditions.  These results suggest that buses form a highly 
stable stream of traffic. 

The time-independent analysis for the reciprocal-spacing model 
and the speed-reciprocal-spacing-squared model uses the time 
dependent sensitivity coefficient result, a0,0 , the average speed, 
<U>, and the average spacing, <S>, for eachof the car 
following test cases in order to form estimates of a and  a ,

versus <S>-1 and <U> <S> , respectively.  In Figure 4.20, the 
sensitivity coefficient versus the reciprocal of the average 
spacing for each bus following experiment, and the "least-
squares" straight line are shown.  The slope of this regression is 
an estimate of the reciprocal spacing sensitivity coefficient.  The 
solid dots and circles are points for two different test runs. 

In Figure 4.21, the sensitivity coefficient versus the ratio of the 
average speed to the square of the average spacing for each bus 1,0 2,1 

i.e. by fitting following experiment and the "least-square" straight line are 
shown. The slope of this regression is an estimate of the speed-

a1,0 reciprocal spacing squared sensitivity coefficient.  The solid dots a0,0 <S> and circles are data points for two different test runs.  The slope 
of the straight line in each of these figures give an estimate of 

and their  respective sensitivity coefficient for the sample population. 
For the reciprocal spacing model the results indicate an estimate 

�

<U>
� for a1,0 = 52.8 ± .05 m/sec.  (58 ± 1.61 km/h) and for the speed-a0,0 a2,1

<S>2
reciprocal spacing squared model a  = 54.3 ± 1.86 m.  The 2,1

errors are one standard deviation. 
respectively (Rothery et al. 1964). 
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Note: The sensitivity coefficient versus the reciprocal of the average spacing for each bus following experiment.  The least squares 
straight line is shown.  The slope of this regression is an estimate of the reciprocal spacing sensitivity coefficient.  The solid dots and 
circles are data points for two different test runs. 

Figure 4.20 
Sensitivity Coefficient Versus the Reciprocal of the Average Spacing (Rothery et al. 1964). 

Note: The sensitivity coefficient versus the ratio of the average speed to the square of the average spacing for each bus following 
experiment.  The least squares straight line is shown.  The slope of this regression is an estimate of the speed-reciprocal spacing 
squared sensitivity coefficient.  The solid dots and circles are data points for two different test runs. 

Figure 4.21 
Sensitivity Coefficient Versus the Ratio of the Average Speed (Rothery et al. 1964). 
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Three Car Experiments.  These experiments were carried out in 
an effort to determine, if possible, the degree to which a driver 
is influenced by the vehicle two ahead, i.e., next nearest 
interactions (Herman and Rothery 1965).  The data collected in 
these experiments are fitted to the car following model: 

ẍn�2(t��) �1[ �n�1(t)� � xn xn�2(t)] (4.61) � x xn�2(t)]��2[ � (t)� �

This equation is rewritten in the following form: 

� x xn�2(t)]��[ � (t)� �ẍn�2(t��) �l [ �n�1(t)� � x xn�2(t)] (4.62) n

where 

� � �2/�1

A linear regression analysis is then conducted for specific values 
of the parameter �. For the case � = 0 there is nearest neighbor 
coupling only and for � >> 1 there is next nearest 

neighbor coupling only.  Using eight specific values of � (0, 
0.25, 0.50, 1, 5, 10, 100, and �) and a  mean response time of 
1.6 sec, a maximum correlation was obtained when � = 0. 
However, if response times are allowed to vary, modest 
improvements can be achieved in the correlations. 

While next nearest neighbor couplings cannot be ruled out 
entirely from this study, the results indicate that there are no 
significant changes in the parameters or the correlations when 
following two vehicles and that the stimulus provided by the 
nearest neighbor vehicle, i.e., the 'lead' vehicle, is the most 
significant.  Models incorporating next nearest neighbor 
interactions have also been used in simulation models (Fox and 
Lehman 1967).  The influence of including such interactions in 
simulations are discussed in detail by those authors. 

Miscellaneous Car Following Experiments. A brief discussion 
of the results of three additional vehicle following experiments 
are included here for completeness. 

The experiments of Kometani and Sasaki (1958) were car 
following experiments where the lead vehicle's task was closely 
approximated by: "accelerate at a constant rate from a speed u to 
a speed u' and then decelerate at a constant rate from the speed 
u' to a speed u." This type of task is essentially 'closed' since the 

external situation remains constant.  The task does not change 
appreciably from cycle to cycle.  Accordingly, response times 
can be reduced and even canceled because of the cyclic nature 
of the task.  

By the driver recognizing the periodic nature of the task or that 
the motion is sustained over a period of time (� 13 sec for the 
acceleration phase and � 3 sec for the deceleration phase) the 
driver obtains what is to him/her advanced information. 
Accordingly, the analysis of these experiments resulted in short 
response times � 0.73 sec for low speed (20-40 km/h.) tests and 
� 0.54 sec for high speed (40-80 km/h.) tests.  The results also 
produced significantly large gain factors.  All of the values 
obtained for each of the drivers for �T, exceeded the asymptotic 
stability limit.  Significantly better fits of the data can be made 
using a model which includes the acceleration of the lead vehicle 
(See Equation 4.58) relative to the linear model which does not 
contain such a term.  This is not surprising, given the task of 
following the lead vehicle's motion as described above. 

A partial set of the experiments conducted by Forbes et al. 
(1958) were examined by Helly (1959), who fitted test runs to 
the linear vehicle model, Equation 4.41, by varying � and T to 
minimize the quantity: 

N

[ �n
Exp. Theor..

� �� x (j.�t) x (j.�t)]2 (4.63) n
j 1�

where the data has been quantitized at fixed increments of �t,
� su Exp. N�t is the test run duration, xn (j.�t) is the experimentally 

measured values for the speed of the following vehicle at time 
�j�t, and xn

Theor..(j.�t)  is the theoretical estimate for the speed of 
the following vehicle as determined from the experimentally 
measured values of the acceleration of the following vehicle and 
the speed of the lead vehicle using the linear model. These 
results are summarized in Table 4.4. 

Ohio State Simulation Studies.  From a series of experiments 
conducted on the Ohio State simulator, a relatively simple car 
following model has been proposed for steady-state car 
following (Barbosa 1961). The model is based on the concept 
of driver thresholds and can be most easily described by means 
of a 'typical' recording of relative speed versus spacing as 
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Table 4.4 Results from Car Following Experiments large or the spacing becoming too small.  At point "A," after a
time lag, the driver initiates this deceleration and reduces the 

 Driver # T a00 rmax

 1 1.0 0.7 0.86

 2 0.5 1.3 0.96

 3 0.6 0.8 0.91

 4 0.5 1.0 0.87

 5 0.7 1.1 0.96

 6 0.5 1.0 0.86 

shown in Figure 4.22.  At point "1," it is postulated that the 
driver becomes aware that he is moving at a higher speed than 
the lead vehicle and makes the decision to decelerate in order to 
avoid having either the negative relative speed becoming too 

relative speed to zero.  Since drivers have a threshold level 
below which relative speed cannot be estimated with accuracy, 
the driver continues to decelerate until he becomes aware of a 
positive relative speed because it either exceeds the threshold at 
this spacing or because the change in spacing has exceeded its 
threshold level.  At point "2," the driver makes the decision to 
accelerate in order not to drift away from the lead vehicle.  This 
decision is executed at point "B" until point "3" is reach and the 
cycle is more or less repeated.  It was found that the arcs,  e.g., 
AB, BC, etc. are "approximately parabolic" implying that 
accelerations can be considered roughly to be constant. These 
accelerations have been studied in detail in order to obtain 
estimates of relative speed thresholds and how they vary with 
respect to inter-vehicle spacing and observation times (Todosiev 
1963). The results are summarized in Figure 4.23.  This driving 
task, following a lead vehicle traveling at constant speed, was 
also studied using automobiles in a driving situation so that the 
pertinent data could be collected in a closer-to-reality situation 
and then analyzed (Rothery 1968). 

Figure 4.22 
Relative Speed Versus Spacing (Rothery 1968). 
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Figure 4.23 
Relative Speed Thresholds Versus Inter-Vehicle Spacing for 

Various Values of the Observation Time. (Rothery 1968). 

The interesting element in these latter results is that the character 
of the motion as exhibited in Figure 4.22 is much the same. 
However, the range of relative speeds at a given spacing that 
were recorded are much lower than those measured on the 
simulator.  Of course the perceptual worlds in these two tests are 
considerably different. The three dimensional aspects of the test 
track experiment alone might provide sufficient additional cues 
to limit the subject variables in contrast to the two dimensional 
CRT screen presented to the 'driver' in the simulator.  In any 
case, thresholds estimated in driving appear to be less than those 
measured via simulation. 

Asymmetry Car Following Studies.  One car following 
experiment was studied segment by segment using a model 
where the stimulus included terms proportional to deviations 
from the mean inter-vehicle spacing, deviations from the mean 
speed of the lead vehicle and deviations from the mean speed of 
the following car (Hankin and Rockwell 1967).  An interesting 
result of the analysis of this model is that it implied an 
asymmetry in the response depending on whether the relative 

speed stimulus is positive or negative.  This effect can be taken 
into account by rewriting our basic model as: 

�xn�1(t��) � �i[ � xn�1(t)] (4.64) x (t)� �n

where �i = �  or �- depending on whether the  relative speed is +

greater or less than zero. 

A reexamination of about forty vehicle following tests that were 
carried out on test tracks and in vehicular tunnels indicates, 
without exception, that such an asymmetry exists (Herman and 
Rothery 1965).  The average value of �  is �10 percent greater -

than �+. The reason for this can partly be attributed to the fact 
that vehicles have considerably different capacities to accelerate 
and decelerate.  Further, the degree of response is likely to be 
different for the situations where vehicles are separating 
compared to those where the spacing is decreasing.  This effect 
creates a special difficulty with car following models as is 
discussed in the literature (Newell 1962; Newell 1965).  One of 
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the principal difficulties is that in a cyclic change in the lead 
vehicle's speed - accelerating up to a higher speed and then 
returning to the initial speed, the asymmetry in acceleration and 
deceleration of the following car prevents return to the original 
spacing.  With n such cycles, the spacing continues to increase 
thereby creating a drifting apart of the vehicles.  A relaxation 
process needs to be added to the models that allows for this 
asymmetry and also allows for the return to the correct spacing. 

4.4.2  Macroscopic Observations:
  Single Lane Traffic 

Several data collections on single lane traffic have been carried 
out with the specific purpose of generating a large sample from 
which accurate estimates of the macroscopic flow characteristics 
could be obtained.  With such a data base, direct comparisons 
can be made with microscopic, car following estimates -
particularly when the car following results are obtained on the 
same facility as the macroscopic data is collected.  One of these 
data collections was carried out in the Holland Tunnel (Edie et 
al. 1963).  The resulting macroscopic flow data for this 24,000 
vehicle sample is shown in Table 4.5. 

The data of Table 4.5 is also shown in graphical form, Figures 
4.24 and 4.25 where speed versus concentration and flow versus 
concentration are shown, respectively.  In Figure 4.24, speed 
versus vehicle concentration for data collected in the Holland 
Tunnel is shown where each data point represents a speed class 
of vehicles moving with the plotted speed ± 1.61 m/sec.  In 
Figure 4.25, flow versus vehicle concentration is shown; the 
solid points are the flow values derived from the speed classes 
assuming steady-state conditions.  (See Table 4.5 and Figure 
4.24.)  Also included in Figure 4.25 are one-minute average flow 
values shown as encircled points.  (See Edie et al. 1963).  Using 
this macroscopic data set, estimates for three sensitivity 
coefficients are estimated for the particular car following models 
that appear to be of significance.  These are: a1,0, a , and a 2,0.2,1

These are sometimes referred to as the Reciprocal Spacing 
Model, Edie's Model, and Greenshields' Model, respectively. 
The numerical values obtained are shown and compared with the 
microscopic estimates from car following experiments for these 
same parameters. 

2The associated units for these estimates are ft/sec, ft /sec, and
miles/car, respectively.  As illustrated in this table, excellent 
agreement is obtained with the reciprocal spacing model.  How 
well these models fit the macroscopic data is shown in Figure 
4.26, where the speed versus vehicle concentration data is 
graphed together with the curves corresponding to the steady-
state speed-concentration relations for the various indicated 
models.  The data appears in Figure 4.24 and 4.25. 

The curves are least square estimates.  All three models provide 
a good estimate of the characteristic speed (i.e., the speed at 
optimum flow, namely 19, 24, and 23 mi/h for the reciprocal 
spacing,  reciprocal spacing squared, and speed reciprocal 
spacing squared models, respectively). 

Edie's original motivation for suggesting the reciprocal spacing 
speed model was to attempt to describe low concentration, non-
congested traffic. The key parameter in this model is the "mean 
free speed", i.e., the vehicular stream speed as the concentration 
goes to zero.  The least squares estimate from the macroscopic 
data is 26.85 meters/second. 

Edie also compared this model with the macroscopic data in the 
concentration range from zero to 56 vehicles/kilometer; the 
reciprocal spacing model was used for higher concentrations 
(Edie 1961). Of course, the two model fit is better than any one 
model fitted over the entire range, but marginally (Rothery 
1968).  Even though the improvement is marginal there is an 
apparent discontinuity in the derivative of the speed-
concentration curve.  This discontinuity is different than that 
which had previously been discussed in the literature.  It had 
been suggested that there was an apparent break in the flow 
concentration curve near maximum flow where the flow drops 
suddenly (Edie and Foote 1958; 1960; 1961).  That type of 
discontinuity suggests that the u-k curve is discontinuous. 

However, the data shown in the above figures suggest that the 
curve is continuous and its derivative is not.  If there is a 
discontinuity in the flow concentration relation near optimum 
flow it is considerably smaller for the Holland Tunnel than has 
been suggested for the Lincoln Tunnel.  Nonetheless, the 
apparent discontinuity suggests that car following may be 
bimodal in character. 

� � ��



�� �����������������	�
�

Table 4.5 Macroscopic Flow Data 

Speed 
(m/sec) 

Average Spacing 
(m) 

Concentration 
(veh/km) 

Number of 
Vehicles 

2.1 12.3 80.1 22 

2.7 12.9 76.5 58 

3.3 14.6 67.6 98 

3.9 15.3 64.3 125

4.5 17.1 57.6 196

5.1 17.8 55.2 293

5.7 18.8 52.6 436

6.3 19.7 50 656

6.9 20.5 48 865

7.5 22.5 43.8 1062

8.1 23.4 42 1267

8.7 25.4 38.8 1328

9.3 26.6 37 1273

9.9 27.7 35.5 1169

10.5 30 32.8 1096

11.1 32.2 30.6 1248

11.7 33.7 29.3 1280

12.3 33.8 26.8 1162

12.9` 43.2 22.8 1087

13.5 43 22.9 1252

14.1 47.4 20.8 1178

14.7 54.5 18.1 1218

15.3 56.2 17.5 1187

15.9 60.5 16.3 1135

16.5 71.5 13.8 837

17.1 75.1 13.1 569

17.7 84.7 11.6 478

18.3 77.3 12.7 291

18.9 88.4 11.1 231

19.5 100.4 9.8 169

20.1 102.7 9.6 55

20.7 120.5 8.1 56
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Note: Each data point represents a speed class of vehicles moving with the plotted speed ± 1 ft/sec (See Table 4.4). 

Figure 4.24 
Speed Versus Vehicle Concentration (Edie et al. 1963). 

Note: The solid points are the flow values derived from the speed classes assuming steady-state condition.  Also included in 
Figure 4.25 are one minute average flow values shown as encircled points. 

Figure 4.25 
Flow Versus Vehicle Concentration (Edie et al. 1963). 
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Figure 4.26 
Speed Versus Vehicle Concentration (Rothery 1968). 

T a b l e 4. 6 flow variables without resorting to using two different 
P a ram e t e r C o m p ari s on expressions or two different sets of parameters to one expression 
( H ol l a nd T unne l D a t a ) has been made by Hall (1987).  More recently, Acha-Daza and 

Parameters Estimates 
Microscopic 

Estimates 
Macroscopic 

a1,0 26.8 27.8 

a2, 0 0.57 0.12 

a2,1 (123) -1 (54) -1

A totally different approach to modeling traffic flow variables 
which incorporates such discontinuities can be found in the 
literature.  Navin (1986) and Hall (1987) have suggested that 
catastrophe theory (Thom 1975; Zeeman 1977) can be used as 
a vehicle for representing traffic relationships.  Specifically, 
Navin followed the two regime approach proposed by Edie and 
cited above and first suggested that traffic relations can be 
represented using the cusp catastrophe.  A serious attempt to 
apply such an approach to actual traffic data in order to represent 

Hall (1994) have reported an analysis of freeway data using 
catastrophe theory which indicates that such an approach can 
effectively be applied to traffic flow.  Macroscopic data has also 
been reported on single lane bus flow.  Here platoons of ten 
buses were studied (Rothery et al. 1964). 

Platoons of buses were used to quantify the steady-state stream 
properties and stability characteristics of single lane bus flow. 
Ideally, long chains of buses should be used in order to obtain 
the bulk properties of the traffic stream and minimize the end 
effects or eliminate this boundary effect by having the lead 
vehicle follow the last positioned vehicle in the platoon using a 
circular roadway.  These latter type of experiments have been 
carried out at the Road Research Laboratory in England 
(Wardrop 1965; Franklin 1967). 

In the platoon experiments, flow rates, vehicle concentration, 
and speed data were obtained.  The average values for the speed 
and concentration data for the ten bus platoon are shown in 
Figure 4.28 together with the numerical value for the parameter 
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Figure 4.27 
Flow Versus Concentration for the Lincoln and Holland Tunnels. 

Figure 4.28 
Average Speed Versus Concentration 

for the Ten-Bus Platoon Steady-State Test Runs (Rothery 1968). 
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= 53 km/h which is to be compared to that obtained from the a1,0

two bus following experiments discussed earlier namely, 58 
km/h.  Given these results, it is estimated that a single lane of 
standard size city buses is stable and has the capacity of over 
65,000 seated passengers/hour.  An independent check of this 
result has been reported (Hodgkins 1963).  Headway times and 

4.5 Automated Car Following 

All of the discussion in this chapter has been focused on manual 
car following, on what drivers do in following one or more other 
vehicles on a single lane of roadway.  Paralleling these studies, 
research has also focused on developing controllers that would 
automatically mimic this task with specific target objectives in 
mind. 

At the 1939 World's Fair, General Motors presented 
conceptually such a vision of automated highways where 
vehicles were controlled both longitudinally (car following) and 
laterally thereby freeing drivers to take on more leisurely 
activities as they moved at freeway speeds to their destinations. 
In the intervening years considerable effort has been extended 
towards the realization of this transportation concept. One prime 
motivation for such systems is that they are envisioned to provide 
more efficient utilization of facilities by increasing roadway 
capacity particularly in areas where constructing additional 
roadway lanes is undesirable and or impractical, and in addition, 
might improve safety levels. The concept of automated 
highways is one where vehicles would operate on both 
conventional roads under manual control and on specially 
instrumented guideways under automatic control.  Here we are 
interested in automatic control of the car following task. Early 
research in this arena was conducted on both a theoretical and 
experimental basis and evaluated at General Motors Corporation 
(Gardels 1960; Morrison 1961; Flory et al. 1962), Ohio State 
University (Fenton 1968;  Bender  and  Fenton  1969;  Benton 
et  al.  1971;  Bender and Fenton 1970),  Japan Governmental 

speed of clusters of three or more buses on seven different 
highways distributed across the United States were measured 
and concluded that a maximum flow for buses would be 
approximately 1300 buses/hour and that this would occur at 
about 56 km/h. 

Mechanical Laboratory (Oshima et al. 1965), the Transportation 
Road Research Laboratory (Giles and Martin 1961; Cardew 
1970), Ford Motor Corporation (Cro and Parker 1970) and the 
Japanese Automobile Research Institute (Ito 1973).  During the 
past several decades three principal research studies in this arena 
stand out: a systems study of automated highway systems 
conducted at General Motors from 1971-1981, a long-range 
program on numerous aspects of automated highways conducted 
at The Ohio State University from 1964-1980, and the Program 
on Advanced Technology for the Highway (PATH) at the 
University of California, Berkeley from about 1976 to the 
present. Three overviews and detailed references to milestones 
of these programs can be found in the literature: Bender (1990),
Fenton and Mayhan (1990), and Shladover et al. (1990),
respectively. 

The car following elements in these studies are focused on 
developing controllers that would replace driver behavior, carry 
out the car following task and would satisfy one or more 
performance and/or safety criteria.  Since these studies have 
essentially been theoretical, they have by necessity required the 
difficult task of modeling vehicle dynamics.  Given a controller 
for the driver element and a realistic model representation of 
vehicle dynamics a host of design strategies and issues have been 
addressed regarding inter-vehicular spacing control, platoon 
configurations, communication schemes, measurement and 
timing requirements, protocols, etc.  Experimental verifications 
of these elements are underway at the present time by PATH. 
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4.6  Summary and Conclusions 

Historically, the subject of car following has evolved over the 
past forty years from conceptual ideas to mathematical model 
descriptions, analysis, model refinements resulting from 
empirical testing and evaluation and finally extensions into 
advanced automatic vehicular control systems.  These 
developments have been overlapping and interactive.  There 
have been ebbs and flows in both the degree of activity and 
progress made by numerous researchers that have been involved 
in the contributions made to date. 

The overall importance of the development of the subject of car 
following can be viewed from five vantage points, four of which 
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