

Outline

- Transfers and network connectivity¹
- Network structure
- Approaches to Network Design

1. Crockett, C., "A Process for Improving Transit Service Connectivity," MST (Master of Science in Transportation) Thesis, MIT. September 2002.

- transfers are a basic characteristic of public transport
 - o necessary for area coverage
- typically 30-60% of urban public transport trips involve multiple public transport vehicles
- a major source of customer dissatisfaction contributing
 - uncertainty
 - discomfort
 - waiting time
 - cost
- often ignored in service evaluation and planning practice

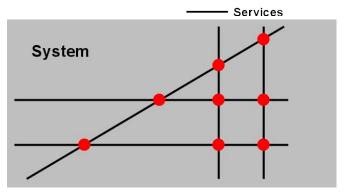
1.258J 11.541J ESD.226J Lecture 15, Spring 2017

1

1.258J 11.541J ESD.226J Lecture 15, Spring 2017

2

A Framework For Improving Connectivity System Elements



Service connectivity is affected by

- System elements
- Transfer facility elements

Service elements

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

Transfer Price	Pre-Trip Information	Fare Media	In-vehicle Information	Fare Control
Free	System information with trip planner	Same	Real-time and connecting route information; transfer announcements	No validation needed, and can leave public transportation space
Discounted	System information		Connecting route information, transfer announcements	No validation needed if remaining in public transportation space
	Route information		Connecting route information	Validation needed, but no delay added to trip
Full additional fare	No information	Different	No information	Validation adds delay to trip

1.258J 11.541J ESD.226J 3 1.258J 11.541J ESD.226J Lecture 15, Spring 2017 Lecture 15, Spring 2017

Transfer Facility Elements

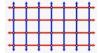
Weather protection	En-Route information	Changing Levels	Road Crossings	Walking Distance	Concessions
Fully-protected connection	Real-time, system, facility, and schedule information	No vertical separation	No road crossing required	No walking required	Large selection
Covered connection	System, facility, and schedule information				
Covered waiting area	Facility and schedule information	Vertical separation with assistance	Road crossing required, but assisted	Short walk required	Small selection
	Schedule information				
Open waiting area No information vertical separation without assistance		Unassisted road crossing	Long walk required	None	

Transfer Waiting Time	Span of Service		
High frequency	Matched		
Matched headways and coordinated arrivals and departures			
Coordinated arrivals and departure			
No coordination	Unmatched		

1.258J 11.541J ESD.226J

Lecture 15, Spring 2017

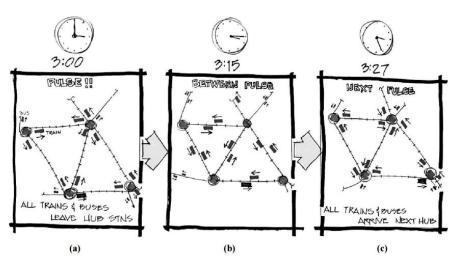
1.258J 11.541J ESD.226J Lecture 15, Spring 2017


Radial (with limited circumferential)

- To obtain large share of trips to city center
- Observations
 - o transit has strongest competitive position with respect to auto for CBD
 - high parking prices
 - limited parking availability
 - auto congestion on radial arterials
 - CBD market has been declining share of all urban trips
 - o network effectiveness for non-CBD trips is poor
- Conclusions
 - effectiveness depends on specifics of urban area
 - strength of CBD as generator
 - highway/auto/parking characteristics
 - overall level of transit ridership

Grid and Timed Transfer

- Aims
 - o provide reasonable level of transit service for many O-D pairs
 - decrease the perception of transfers as major disincentive for riders


Observations

- must avoid negative impact on CBD ridership
- what is impact of restricting headways to set figure, e.g. 30 minutes?
- how much extra running time is required to guarantee connections?
- will transit be competitive in non-CBD markets?
- well-located transfer centers can enhance suburban mobility

Conclusions

- o grid systems work well with high ridership and dispersed travel patterns
 - New York City, Toronto, Los Angeles
 - high frequencies reduce need for timed transfers
- o timed transfers work well for urban areas with dispersed focused suburban activity centers, multi-modal networks

Source: Maxwell, R., 2003. Converting a large region to a multimodal pulsed-hub public transport network. Transportation Research Record: Journal of the Transportation Research Board, (1835), pp.128-136.

© National Academies of Sciences. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

> 1.258J 11.541J ESD.226J Lecture 15, Spring 2017

Pulse

To provide convenient one-transfer service throughout small urban area

Observations

- o route design geared to particular round trip travel time because all routes have same headway
- o as number of routes increase, harder to maintain reliability, have to increase recovery/rendezvous time
- depends on availability of effective pulse point

Conclusions

- o well suited for many well focused outer suburban areas and small independent cities
- o making changes to a route becomes difficult, requires coordination
- not good when there is congestion near pulse point

1.258J 11.541J ESD.226J Lecture 15, Spring 2017

10

9

Approaches to Network Design

- To provide effective service for both short and long trips
- Observations
 - o rail (or other guideway) networks are expensive to build and hence network is limited in length
 - o rail capacity is high, marginal cost of carrying passengers relatively low
 - o for new rail lines
 - is direct bus service retained?
 - are passengers forced to transfer to rail?

Conclusions

- o need to look at total trip time and cost to determine net impact on different
- build integrated bus/rail fare policy to encourage riders to take fastest route

- o seek opportunities to intervene locally in network o computer simulation - detailed analysis tool
- Global Network Design synthesize new network
 - fully automated
 - man/machine interaction

Incremental Improvements

Computer Simulation

- Tool to answer what-if questions
- **Functions**
 - specify system (e.g., route characteristics) and operating environment
 - o model estimates performance transit ridership, costs, etc.
 - revise as desire and re-run
- Not heavily used for route design, tends to be incremental
- Examples
 - EMME
 - multimodal
 - full equilibrium
 - MADITUC
 - public transportation
 - fixed transit demand matrix
 - strong interactive graphics capabilities for network displays travel flows

Differentiating Features of Bus Network **Models**

- Demand
 - assumed constant
 - o assumed variable based on service design
- **Objective Function**
 - o minimize generalized cost
 - o maximize ridership
- Constraints
 - o fleet size
 - operating budget
 - vehicle capacity
- Passenger Behavior
 - o system or user optimizing
 - o single or multiple path assignment
- Solution Technique
 - partition into route generation and frequency determination

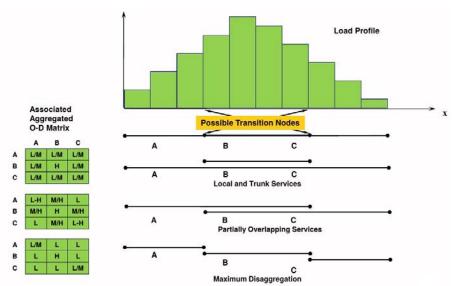
1.258J 11.541J ESD.226J Lecture 15, Spring 2017

13

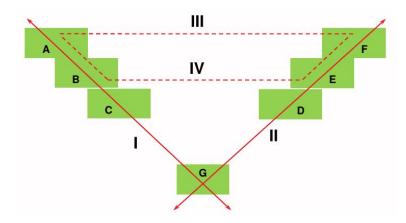
1.258J 11.541J ESD.226J Lecture 15, Spring 2017

14

III Incremental Improvement


Aims

- examine load profiles of individual routes looking for improvement opportunities
- obtain routes characterized by high frequencies and fairly constant loads


Strategies

- route decomposition
 - o where frequency is high but load is variable along route
- route aggregation
 - o combine parallel routes to improve frequency or through-route to reduce transfers
- new services
 - reduce circuity and operating cost, access new markets

Route Disaggregation Options

New Direct Services

1.258J 11.541J ESD.226J Lecture 15, Spring 2017

VIPS-II Package

Basic premises

- o fully automated planning systems won't work
- o computer role is to number crunch and organize information
- o also solve specific sub-problems
- o need interactive graphics for good man-machine communication
- o need variable demand

Objective

- Maximize number of passengers subject to constraints
 - operator cost
 - minimum level of service

• 1987 upgrade

- o passengers can be aware/unaware of timetable
- headways between routes can be coordinated
- stops and modes can have different disutility weights
- congestion causes delays and uneven headways

Public Transportation Planning, a Mathematical Programming Approach by Dick Hasselström. Göteborg, Sweden, 1981.

 $@\ Gothenburg: Dept.\ of\ Business\ Administration,\ University\ of\ Gothenburg.\ All\ rights\ reserved.\ This\ content\ is\ excluded\ from\ our\ Creative\ Commons\ license.\ For\ more\ information,\ see\ http://ocw.mit.edu/help/faq-fair-use/.$

VIPS-II Package

Applications

- o route network analysis
- frequency optimization

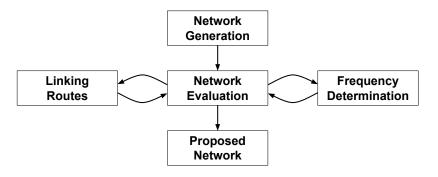
Inputs

- network
- fare structure

Outputs

- costs
- o revenues
- o productivity
- travel times
- level of service
- route choice

Public Transportation Planning, a Mathematical Programming Approach by Dick Hasselström. Göteborg, Sweden, 1981.

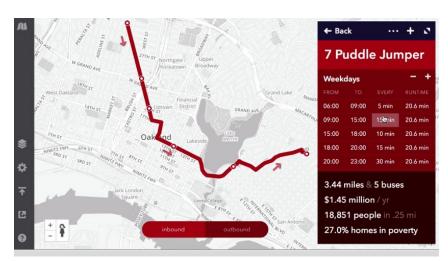

© Gothenburg: Dept. of Business Administration, University of Gothenburg. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

17 1.258J 11.541J ESD 226J Lecture 15, Spring 2017

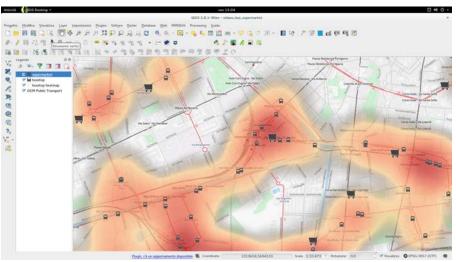
General Model Structure

Specific Sub-Problems

- evaluation of a proposed network
- frequency determination for given routes
- linking routes at junction
- generation of initial route network



- Start with fully connected network
 - eliminate the weakest routes iteratively
 - o reassign passenger flows to the best remaining routes
- Generate a large number of possible routes heuristically
 - o based on the following route design principles:
 - most high demand O-D pairs should be served directly
 - only certain modes are suitable for route terminal
 - routes should be direct and not be circuitous
 - routes should meet to facilitate transfers
 - Select final set of routes through optimization problem formulation


1.258J 11.541J ESD.226J Lecture 15, Spring 2017

remix

Source: http://remix.com/

Source: https://www.flickr.com/photos/city-planner/16732124571/in/pool-2327386@N22

© city-planner. License: CC BY-SA. Some rights reserved. This content is excluded from our Creative Commons license. For m6xmation, see https://ocw.mit.edu/help/faq-fair-use/ Lecture 15, Soning 2017

21

MIT OpenCourseWare https://ocw.mit.edu/

1.258J / 11.541J Public Transportation Systems Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.