Advanced Customer Information Strategies

OUTLINE

- Evolution of Customer Information (CI)
- Current State of CI
- **Emerging Medium-Term Visions**
- Challenges and Required Research
- Some New Models for Transit

1.258/11.541/ESD.226 Spring 2017, April 25, 2017 John Attanucci

AFC provides database on individual trip-making

Spring 2017, April 25, 2017

Automated scheduling systems make service plan accessible

Google (General) Transit standard formats provide universal

GPS and WIFI cell phones provide current customer location

Evolution of Customer Information

- Operator view
- Static
- Pre-trip and at stop/station
- Generic customer
- Active systems

Customer view

Dynamic

En route

Specific customer

Passive systems

State of Research/Knowledge in CI

Wireless communication/Internet apps

AVL provides current vehicle locations

- Pre-trip journey planner systems widely deployed but with limited functionality in terms of recognizing individual preferences (e.g., Google Transit)
- Next vehicle arrival times at stops/stations well developed and increasingly widely deployed
 - both often strongly reliant on veracity of service schedules
 - ineffective in dealing with disrupted service
- Real-time mobile phone information

Enabling Technologies

trip planning

- many new apps, some great, some not so great
- despite Google's entry, large cities still seem to have many nondominant popular apps

1.258/11.541/ESD.226

John Attanucci

1.258/11.541/ESD.226

Examples of Well-Designed Mobile Apps: NextBus, CityMapper, and Transit?

- · First finds your location
- Lists all services and nearest stops for each within 1/4 mile radius
- Scrolls to show next 2-3 vehicles for each service in each direction
- Apps now includes a lot more ("Sharing" modes, Zipcar)

John Attanucc

1.258/11.541/ESD.226 Spring 2017, April 25, 2017 5

John Attanucci

1.258/11.541/ESD.226 Spring 2017, April 25, 2017 7

Emerging Possibilities

- Exception-based CI based on stated and revealed individual preferences, typical individual trip-making, and current AVL data
- Integration of AFC and CI functions through payment-capable cell phones
- · Can CI actually attract more customers?
 - · multi-modal trip planner/navigation systems
 - · with a well-planned marketing program

Medium-term Vision

"Transit" becomes a virtual presence on mobile devices:

- · Could redefine transit to reflect all types of mobility services
- · Do (will) everyone have their lives on their smart phones?
 - · Single device for payment and information
 - Can personal tracking apps (e.g., Moves) incorporate/be combined with app planning options
 - "Station in your pocket": no need to restrict countdown clocks, status updates, trip guides to stations or fixed devices
 - Lifestyle services: guaranteed connections, in-station navigation, bus stop finder, on-vehicle and en-route alerts, transit validation, rendezvous, ...

Remaining Challenges

- Getting all systems (public and private) to release all real-time data
- Establishing/Promoting a standard format (e.g., GTFS-real-time)
 so apps can work wherever you travel
- · Determining how to make better real-time arrival predictions
- Determining how best to communicate during major disruptions, when real-time predictions are less useful
- Providing more CI quickly and cost-effectively w/o disturbing disabled advocates
- Can we incorporate private ridesharing into our real-time apps?
 (e.g., Rideamigos, Carma)

Potential Research Questions

- Can arrival time predictions be improved when congestion occurs?
- How can the availability and analysis of real-time information better inform development of the operating plan?
- Can we really change travel behavior (e.g., by targeting drivers with better transit and ridesharing information)
- What is the impact of real-time info on transit rider behavior?

John Attanucci

John Attanucci

1.258/11.541/ESD.226 Spring 2017, April 25, 2017

10

1.258/11.541/ESD.226 Spring 2017, April 25, 2017

Updating our Customer Research: One New Approach

- · Use automated fare data to identify distinct customer research "panels"
- Registration data and permissions are key: a surprising number of customers will opt to participate
- Email and web surveys used to measure attitudes, perceptions and expectations only—tied to usage through fare transaction data and "tracking" data from apps such as Moves
- · Use significant "lottery" incentives to boost response rates
- Panel data continually enriched over time

Testing New Customer Strategies

- Large panels can be divided for periodic tests of new communication options
- Market research morphs into prototype services
- Pilot programs in partnership with bike and carsharing and TNCs to transit customers: Mobility as a Service (MaaS)
- Immediate feedback from motivated users (guaranteed by ongoing incentives)
- Tie to fare cards or cell phones provides ridership response
- May help to define better ways to deliver bad news (e.g., service disruptions)

REDEFINING URBAN MOBILITY

- Modal share of public transportation into downtown during morning rush hour up to 73%
- Modal share of active and alternative modes of transportation has also increased
- More cars on the island, but younger generation uses other means for their mobility
- Growing popularity of bicycles

Isabelle.trottier@stm.info

© STM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

INTEGRATED MOBILITY

A variety of services targeting a variety of users

Isabelle.trottier@stm.info

© STM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

CONCLUSIONS DRAWN FROM PILOT PROJECT

- > Joint bus bicycle use is both possible and even desirable
- Safe and functional concept
- Adopted by cyclists
- No impact on bus performance
- Deployment on a case-by-case basis: layout designed for safety and adapted to surroundings are necessary

Isabelle.trottier@stm.info

© STM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

BUS - BICYCLE RESERVED LANE **UNDER STUDY**

- Best practices from around the world were analyzed.
- Each corridor is unique, so a case-bycase approach is preferred.
- The STM has and will continue to test various concepts through its pilot projects.
 - Partnerships with stakeholders concerned with sustainable mobility, including bicycle proponents.

Isabelle.trottier@stm.info

© STM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Can All This New Technology (and Marketing) Lead to a Re-Definition of "Public" Transportation?

- Limited capital investments still being made (easier for service expansions)
- · Almost no new operating resources available
- But ... unheard-of levels of private marketing funding combined with "market" rate pricing of alternative services
- One possible future: core high-frequency transit services on limited routes with low fares combined with market-rate services for first/last mile and third-party subsidies where needed, all informed by and paid for by a MaaS phone app

John Attanucci 1.258/11.541/ESD.226 Spring 2017, April 25, 2017

MIT OpenCourseWare https://ocw.mit.edu/

1.258J / 11.541J Public Transportation Systems Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.