
1.264 Lecture 15 

SQL transactions, security, indexes 

Download BeefData.csv and Lecture15Download.sql 
Next class:  Read “Beginning ASP.NET ” chapter 1. 
Exercise due after class (5:00) 
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SQL Server diagrams 

• Select “Database Diagrams” under your database 
– New diagram 
– Add tables 
– Make sure the diagram matches the data model 

Don’t need to hand this in 2
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SQL Server script creation 
• After building a table, you can save its design 

– Right click on the table in the explorer 
– Select “Script table as”-> Create to (or other options) 
– This allows you to automate creating and working with 

the database. Write script to query window—hand in. 
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SQL Server import/export 

• To import data from a file, spreadsheet, etc: 
– Start->All Programs-> MS SQL Server 2012-

>Import/Export (64 bit) 
– Wizard starts 

• Data source: Flat file source (or other option listed) 
• Browse to file (usually csv—comma separated– or txt) 
• Select database (MIT1264 in this example) 
• New table is created with data from file 

– Exercise: Import  Lecture 15 Beef Data.csv 
• No need to hand in 
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Data definition language (DDL) 

• We’ve explored the data manipulation language 
(DML) so far: SELECT, INSERT, UPDATE, DELETE 

• SQL also has a data definition language (DDL): 
– CREATE DATABASE 
– CREATE TABLE 
– CREATE INDEX      (and other CREATE statements) 
– ALTER TABLE 
– ALTER VIEW           (and other ALTER statements) 
– DROP DATABASE 
– DROP TABLE 
– DROP VIEW             (and other DROP statements) 

• You’ve seen some of these in the initial .sql file 
that created our database, and in the script 
example earlier 
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Transactions 

• Group of operations often must be treated as 
atomic unit 
– Start transaction 

• Insert OrderHeader 
• While more OrderDetail (line items) exist: 

– Select Part 
– Update Part inventory 
– Insert OrderDetail row 

– Commit transaction if everything succeeds 
– Roll back transaction if any error occurs: 

• In Order Header 
• In OrderDetail 
• Server crashes 
• Disk crashes 
• Network dies 
• Etc. 
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Transaction properties (ACID) 

• Atomicity. Either all of transactions are executed 
or all are rolled back 
– Account transfer debit and credit both succeed or fail 

• Consistency. Only legal states can exist 
– If order detail cannot be written, order header is rolled 

back 
• Isolation. Results not seen by other transactions 

until the transaction is complete 
– Account transfer debit and credit either both seen or 

neither is seen 
• Durability.  Data is persistent even if hardware or 

software crashes: What is written on the disk is 
correct 
– Account balance is maintained 
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Transactions 

• Multi-user databases have other transaction issues 
• Two database actions conflict if one or both are 

write operations. Examples of problems: 
– Lost updates: 

• 7 parts in inventory 
• Transactions 1 and 2 simultaneously read 7 as the current 

quantity 
• Transaction 1 finishes first, adds 3 parts, writes 10 as quantity 
• Transaction 2 finishes second, subtracts 5 parts, writes 2 as 

quantity! 
– Uncommitted changes: 

• Transaction 1 adds 3 parts, writes 10 as quantity 
• Transaction 2 reads 10 as quantity 
• Transaction 1 aborts (rolls back), leaving transaction 2 with 

wrong data 
– Databases handle all these cases automatically 
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Transactions 

• Databases use locks for concurrency. One simple scheme is 
pessimistic locking: 
– Writes obtain exclusive lock on a record, preventing reads or writes 
– Reads obtain nonexclusive locks, allowing other reads but 

preventing a writer from obtaining an exclusive lock 
• Another, with higher performance, is optimistic locking: 

– No locks. Check if row exists and is same after operation 
– If not, issue error and program must retry 

• Databases use logs for transactions, rollbacks, recovery. 
– Log file of all changes is written in addition to making the changes 

in the database.  (This is a key bottleneck in software architecture.) 
– Transaction can’t be committed until log is written to stable storage 

• Transactions usually committed before tables actually updated on disk 
– If a change is rolled back, the log is read to reverse the 

transactions. 
– If a system or disk crashes, the log is rerun from the last 

checkpoint to restore the database. 
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Transaction example and exercise 
INSERT Customers VALUES (212, 'Smith Co', 89, 20000)         -- Independent INSERTs 
INSERT Orders VALUES (212, 'Lathe', 3, 20000, 0.1) 
INSERT Orders VALUES (212, 'Latte', 10, 2, 0.0) 
 
-- INSERTs as a transaction (Usually done in program code, which is simpler) 
BEGIN TRAN 
INSERT Customers VALUES (213, 'Wang Co', 53, 100000) 
IF @@ERROR = 0 
  BEGIN 
    INSERT Orders VALUES (213, 'Mill', 1, 50000, 0.2) 
    IF @@ERROR = 0  
      BEGIN 
        INSERT Orders VALUES (213, 'Malt', 1, 2, 0.0) 
        IF @@ERROR = 0 
          COMMIT TRAN 
        ELSE 
          ROLLBACK TRAN 
      END 
    ELSE 
      ROLLBACK TRAN 
  END 
ELSE 
  ROLLBACK TRAN 

Exercise: Modify the transaction: 
It’s in Lecture15Download.sql on Web 
INSERT Customer 214 
INSERT first order for 214 correctly 
INSERT 2nd order incorrectly: leave out 
 the last two fields 
Then open Customers and Orders: 
Are any of the INSERTs present? 
Hand in your changed .sql file 10



Security (and short exercise) 

• Security options 
– Use operating system logon/password (weak) to identify user 

• User gets access to all databases, all tables (“Windows authentication”) 
– Use database logon/password (stronger) 

• Restrict access to databases, tables, but can still use all applications 
• “SQL Server authentication”: we’ll use this for the Web->db connection 

– Application level security (stronger still, but tough to administer) 
• Each application must look in its database to see if user authorized 

– Network level security (strongest), using certificates/tickets 
• Use Kerberos, MS Active Directory, others (covered under security) 

• Classes of users: super-user (dba or sa), data owner, data user 
• Assignment of database privileges (permissions) 

– GRANT and REVOKE:  E.g., 
• GRANT INSERT ON TableName TO PUBLIC WITH GRANT OPTION 
• REVOKE INSERT ON TableName FROM PUBLIC CASCADE 
• Order matters for GRANTs and REVOKEs. Last one governs. 
• Try these two statements; look at the table properties in client. Hand in. 
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Indexes 
• Index is a separate data object in the database 

that lists table rows in order to allow rapid lookup 
– Each index for each table is a separate object 
– Primary keys and foreign keys automatically indexed 

• Rapid access to indexed columns 
– Each index may be updated when a row is updated, so 

indexes slow updates, insertions and deletes 
– If a database is mostly read, use many indexes to speed 

performance 
– If database is mostly updates, use as few indexes as 

possible 
– Practical maximum of 3 or 4 indexes per table. If others 

are needed on occasion, add and drop them as needed 
– (Use indexes when working with transit fare, bus data) 

• Clustered indexes 
– Physically rearrange rows by a single index to maximize 

disk access speed 
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Indexes (and short exercise) 
• Customer database 

– Customer ID is primary key 
– We also want to search by: 

• Customer name (last, first) 
• City, state 
• Postal (zip) code 
• Address 

– Index the name, city/state, zip and address 
• Four indexes: slow insert, update, delete, but fast lookup 
• If customer database is fairly stable, this is fine 

– Similar logic for parts catalog, bill of materials, etc. 
• Internet search engines use ‘text retrieval engines’ 

– Index every word in the entire database; count occurrences 
and rank matches.  Recent advances (frequency of links, 
usage…) enhance this. 

• Exercise (hand in): 
– CREATE INDEX IX_Orders ON Orders  (Cust, OrderNbr)  
– Use the MIT1264 database 13



ODBC, ADO.NET, JDBC 

• ODBC, etc. are a library of procedures (methods) 
to connect from an application (Web, Windows, 
Java) to a database, execute SQL statements and 
retrieve results 
– SQL syntax based on SQL-92 standard 
– Standard set of error codes 
– Standard way to connect and log on to database 
– Standard representation of data types 
– Standard methods for data type conversions 

• These features overcome many nonstandard SQL 
issues noted in the first SQL lecture 
– We’ll use ADO.NET when building Web sites and services 

• We will look at database performance and costs in 
the system architecture lectures later 
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