
1.264 Lecture 2

System process fundamentals

Today: Find a homework partner.
Next class: Read chapters 4-6. Hand in exercise solution after class

1

Case study: Demand forecasting, version 1

• Do you have questions on what happened?
• What are your overall reactions to this?

– Does it seem familiar? Has this happened to you?
– What related experiences have you had?

• Discussion items
– List as many errors that were made by this team as you

can.
– What did the team do right?
– What project management method was used? Was it

appropriate?
– What should they have done to succeed?

• Summary
2

Case study: Demand forecasting, version 3

• Do you have questions on what happened?
• What are your overall reactions to this?

– Does it seem familiar? Has this happened to you?
– What related experiences have you had?

• Discussion items
– At the 4 month point, what do you, Pat, do? You can

have some additional resources; specify those you
would like to have.

– With your suggested actions, will you be able to deliver
the system on time, in 11 months? Why or why not?

– With your suggested actions, how certain will you be at
month 8 whether you can deliver on time?

• Summary 3

4

Technical fundamentals

Spiral model as basis for development

Image by MIT OpenCourseWare.

Process choices

Lifecycle model Strengths Weaknesses
Code and fix None known Unpredictable, chaotic
Waterfall Efficient if requirements

known. Good for
repeated applications.

No feedback or change
in process.
Cumbersome, likely to
fail (2% success DoD)

Rapid prototype Aligns with client needs Insufficient structure to
deliver production
system

Open source Uses skills of large
number of people

Unstructured, almost all
efforts fail.

Agile process Flexible, can be fast Works best/only on
small projects

Spiral model Manages risks,
feedback, well-defined.
Works on large projects

Requires skill and
discipline

5

Different process models for 12 month project

• Traditional, chaotic approach:
– 1 month requirements, left incomplete
– 1 month design, left incomplete
– 9 months development, with substantial rework
– 1 month test/QA (quality assurance), which is insufficient: poor

quality, late
• Waterfall, based on past metrics:

– 3 months requirements
– 3 months design
– 3 months development
– 3 months test/QA, produces system but with limited scope

• Spiral (often called ‘agile’ with ‘sprints’ rather than spirals)
– 3 spirals, each 4 months:

• 1 month requirements
• 1 month design
• 1 month implementation
• 1 month test/QA/review 6

Exercise

• What process would you use?
– Off-the-shelf accounting system implementation in a

middle size company, your 20th one
– Reducing number of distribution centers significantly in

a large company
– Privatizing bus operations funded by a public

transportation agency
– Revamping your company’s marketing strategy

• Take 10 minutes:
– Recommend a process
– List top 3 factors or key unknowns to be researched

early in the decision

7

Solution (one of many)

• What process would you use?
– Off-the-shelf accounting system implementation in a middle

size company, your 20th one
• Waterfall

– Reducing number of distribution centers significantly in a
large company
• Spiral.

– 1: identify key issues, risks
– 2: develop plans based on overall corporate goals
– 3: refine plans with the field, vendors

– Privatizing bus operations funded by a public transportation
agency
• Spiral:

– 1: define procurement process, contract options, suppliers
– 2: develop plans based on agency goals
– 3: review and revise plans after discussion with vendors

– Revamping your company’s marketing strategy
• Rapid prototype: Mock up and assess many ideas

8

Requirements fundamentals

• Requirements: what should the system do?
– What we’re doing in homework this semester is

essentially an extended requirements analysis
• The first spiral can often be viewed as requirements step

– Requirements steps
• Text description of the system: a necessary overview
• Use cases (UML) to list scenarios
• Text descriptions of scenarios to give more detail
• Initial version of user interface/new process and manual
• Data model (entity-relationship diagram)

– As complete picture of all data (or objects) in the system as
possible. Determines the business rules.

• Other UML diagrams as needed: state, activity, component
– These needs are the same whether you are

implementing, configuring, modifying or developing a
system, business process, ….

9

Design fundamentals

• Design: how does the system or process work?
– Data model, complete
– User interface or process mockup
– UML diagrams

• System architecture (components, interfaces, hardware…)
• Use cases (lists of scenarios), complete
• Scenarios, as text
• Class diagrams (for software systems)

– Extend data models to cover all behaviors in the system
• Sequence and collaboration models (dataflow diagrams)

– Dynamic view of multiple flows of data and control in the system
• State models (state transition diagrams)

– Dynamic and complete view of the data values and logic

– These needs are the same whether you are
implementing, configuring, modifying or developing a
system

10

Implementation fundamentals

• Requirements and design dictate development
success
– 60% of system defects exist at requirements/design time
– Cost of correcting errors (relative) at different stages:

• Requirements: $100
• Design: $500
• Implementation/QA: $2,500
• Operation: $12,500

• Implementation practices: CMMI (capabilities
maturity model) –development, acquisition, services
– Have requirements, design documents, UML, data models
– Measure team size, system size, defects, effort, schedule
– Use a defined implementation process: spiral, agile, etc.
– Integrate and bring system to usable state frequently
– Perform quality assurance continuously
– Get mechanics right: version control, documents, reviews 11

Quality assurance fundamentals

• QA starts at project initiation
– Requirements scrubbing and reviews
– Design reviews
– Implementation inspections and walk-throughs

• Testing
– System tests find 10-60% of defects
– Reviews and inspections find 60-90%: more critical than

testing
– This holds for software, hardware, process changes, ….

• Error prone components: identify and re-do
– 57% of errors in 7% of software modules (IBM surveys)
– Similar numbers for non-software projects
– Often one “god” component that implements all the

logic is very complex and has many errors
• Indicates system was not decomposed properly into

modules or cooperative roles 12

Risk management

• Risk management
– Spiral model is all about managing risk

• First spiral focuses on riskiest areas: requirements,
design, implementation in most difficult areas

• First spiral assessment then allows substantial revision of
requirements and design, based on having tried to do it
once already

• Second spiral has much cleaner requirements, design, and
can usually produce a system close to what’s needed

• Third spiral cleans up issues, makes system manageable
and stable

– Keep a top 10 risks list
• Assess probability of risk, magnitude of loss if it occurs
• Rank and manage the list frequently (often weekly)

13

Summary

• Project definition and development process is
time consuming and labor intensive
– There are massive pressures to do this quickly

• The seemingly straightforward, but deceptively
difficult, part of this process is to clearly
understand and specify the requirements the
project must satisfy
– Because of the cumulative nature of the project process,

mistakes made in early stages but only identified at a
later stage result in major delays and cost increases

– The spiral model, based on requirements, UML, data and
class diagrams is used to manage these risks
• Other agile models can also be used

– “Lord Krishna said, you and I have been reborn many
times. I remember them but you do not.” -Bhagavad Gita

14

MIT OpenCourseWare
http://ocw.mit.edu

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies
Fall�����

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

