1.264 Lecture 24

Service Oriented Architecture Electronic Data Interchange (EDI)

Next class: Anderson chapter 1, 2. Exercise due before class

Solution- case study

- XSLT used by customer or manufacturer/distributor to alter XML being sent or received
- XSD and/or DTD used by customer or manufacturer/ distributor to validate XML being sent or rec'd
- Web services package the HTTP, XML, XSD, request/response and URL used in "raw" XML transfers
- Web services described in WSDL documents in registry. E.g.,
 - Manufacturer/distributor registers Web service in UDDI registry
 - Customer discovers Web service and invokes it on mfr/distrib Web server
- Visual tool: CSS for XHTML, XSLT for XML

Challenges of system integration

- Companies use multiple systems that must increasingly cooperate
 - Systems often are in different business groups
 - Or in different companies (vendors, channel partners...)
 - Run on different platforms (operating system, hardware)
 - Written in different languages
 - Use different communication protocols
 - File transfer, EDI, XML, RPC, MQ, CORBA, COM, sockets...
 - Have different databases, data definitions
 - Have different objectives, run at different times/periods
- Solution is desired that allows integration in spite of different languages, protocols, hardware...

Service oriented architecture (SOA)

- Web services are basis for integration in SOA
- A core of standard open technologies are used
 - XML, XML Schema (XSD), XSLT, SOAP, WSDL
 - Operating system-, hardware-, software-, database-neutral
- A registry (database) is used to store WSDL for service discovery
- Security, reliability, performance, transactions must be added to 'primitive' Web services to have SOA
- SOA supports composition (assembling) of services, reusability of services, extensibility
- SOA is based on a service-focused business model
 - UML business process models can be implemented in SOA

Service oriented architecture 2

- SOA is based on loose coupling between systems
- Asynchronous, or message-oriented (MOM) integration
 - Document is sent from system A to system B
 - Response generally not guaranteed in any given time
 - A process may not complete for a long time
 - Example: Shipment tracking service (success)
 - Example: Async telecom service orders system (failed)

Example of current SOA implementation

Image by MIT OpenCourseWare.

Service is Web service

SOA architecture (between Web servers)

SOA use of WSDL

Image by MIT OpenCourseWare.

SOA service composition

Image by MIT OpenCourseWare.

Web services and existing systems

Image by MIT OpenCourseWare.

Exercise

- Draw an SOA diagram for your homework system
- Decide how you would structure your catalog browsing and ordering systems
- Draw your Web services
- Draw the Web services your customers would use to communicate with you
- Use Figure 5.4 and/or Figure 5.15 on the previous slides as a template

Web 2.0

- First generation Web services: SOAP, WSDL, UDDI (WSDL registry)
 - Met functional requirements for businesses, but not the supporting requirements: security, reliability, availability, quality of service, choreography
- Web 2.0: WS-* specifications:
 - WS-Addressing: references to Web service endpoint
 - WS-Atomic Transaction
 - WS-Business Process Execution Language
 - WS-Choreography Language
 - WS-Coordination and WS-Eventing
 - WS-Metadata Exchange Language
 - WS-Notification
 - WS-Reliable Messaging
 - WS-Security: end to end, not just point to point

Business Process Execution Language

Image by MIT OpenCourseWare.

EDI (Electronic Data Interchange)

- EDI is a mainframe-based standard for electronic exchange of information. Developed in 1980s.
 - EDI is expensive, complex and has limited usage, but enough that new technologies must interoperate with it
 - Typically, large companies use EDI and require it of their smaller partners/vendors, who are not always eager to use it
 - Two EDI standards: ANSI X12 and EDIFACT (UN)
- XML documents follow EDI standards in many cases
 - EDI documents are called Transaction Sets (TS)
 - EDI to XML mapping established using DTDs
- New users of Internet ecommerce may skip EDI and use XML
 - Less than 80,000 of 6-10 million US businesses use EDI
 - 125,000 businesses world-wide use EDI
 - EDI cost and complexity are large obstacle for medium size businesses

EDI

• EDI communications:

- Binary, not text (difficult to change or troubleshoot)
 - EDI transaction sets are static
 - EDI designed for expensive and scarce communications
 - Much optimization of message size, etc.
 - Intended to replace letters, phone calls, faxes
 - Not self-describing, cannot be validated, can't be extended...
- Done through third party value-added networks (VANs)
- Companies generally use file transfer to send file to VAN
 - VAN handles EDI exchange with trading partners
 - Geared to once-a-day, batch exchanges of data
- Example (over a period of days): A purchaser:
 - Sends EDI 840 document (Request for Quote)
 - Receives EDI 843 (Quote)
 - Sends EDI 850 (Purchase Order)
 - Receives EDI 856 (Shipment Notice)
 - Receives EDI 810 (Invoice)
 - Sends EDI 820 (Payment)

EDI and XML

Image by MIT OpenCourseWare.

EDI/XML translation

ISA - Interchange Control Header

Purpose: To start and identify an interchange of one or more functional groups, interchange related control segments.

Field	Element	Field Name	Req	Туре	Size	Seagate Usage
ISA01	101	Authorization Information Qualifier	М	ID	2	00
ISA02	102	Authorization Information	М	AN	10	Not used by Seagate
ISA03	103	Security Authorization Information	М	ID	2	00
ISA04	104	Security Information	М	AN	10	Not used by Seagate
ISA05	105	Interchange ID Qualifier	М	ID	2	Trading partner qualifier
ISA06	106	Interchange Sender ID	М	ID	15	098533326 = Seagate production ID 98533326TST = Seagate test ID
ISA07	105	Interchange ID Qualifier	М	ID	2	Trading partner qualifier
ISA08	107	Interchange Receiver ID	М	ID	15	Trading partner receiver ID
ISA09	108	Date	М	DT	6	Current data: YYMMDD
ISA10	109	Time	М	ТМ	4	Current time: HHMM
ISA11	110	Interchange Standards Identifier	М	ID	1	U = ANSI X12
ISA12	111	Interchange Version ID	М	ID	5	00306
ISA13	112	Interchange Control Number	М	NO	9	Trading partner specified
ISA14	113	Acknowledgement	М	ID	1	0 = no acknowledgment 1 = interchange acknowledgment requested (always use 0)
ISA15	114	Test Indicator	М	AN	1	P = production data T = test data
ISA16	115	Sub-Element Separator	М	AN	1	Defined by sender

EDI Example

Retail information flows

Image by MIT OpenCourseWare.

Distributor information flow

Image by MIT OpenCourseWare.

Financial information flow

Image by MIT OpenCourseWare.

Manufacturing/engineering information flow

Image by MIT OpenCourseWare.

Manufacturer information flow: detail

Image by MIT OpenCourseWare.

ERP and EDI/XML standards

- The previous slides define the core of an ERP system
 - Many have very substantial additions for human resources, planning, etc.
 - You can buy a full ERP or mix and match best of breed systems. Web service/SOA integration is common.
- Almost every interface on the previous slides has a defined EDI or XML transaction set or message set, typically defined by industry
 - TDCC (1968), EDX, CDIX, TALC, UCS/VICS, WINS, BVAI and others

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.