
1.264 Lecture 28

Cryptography:
Asymmetric keys

Next class: Anderson chapters 20. Exercise due before class
(Reading doesn’t cover same topics as lecture)

1

Asymmetric or “public key” encryption

• Key pairs: public key for encryption, private key for
decryption
– RSA: 1024-2048 bit, in common use for Web and email
– Patent expired in 2005

• Problem with public key algorithms
– Speed: RSA is 1000 times slower than symmetric algorithms

• Problem avoided by using RSA to exchange a symmetric session
key and then using symmetric encryption method for the rest of
the session.

• Use a different symmetric key each session to limit damage if key
is broken

Plaintext Ciphertext Plaintext
Receiver’s

public
key

Receiver’s
private

key

2

Public key (RSA) concept

• Public key P is pair of integers (N, p)
• Secret or private key S is pair of integers (N, s)
• Generate 3 large random prime numbers (Fermat’s Little Thm)

– Largest is s. Call the other two x and y.
– N= xy
– p= smallest integer such that (ps) mod (x-1)(y-1)= 1

• Break message into a series of chunks mi
• Encrypt message chunk mi to ciphertext chunk ci by:

– c = mp mod N

• Decrypt ciphertext chunk ci to plaintext mi by:
– mi = cs mod N

• s is hard to compute from N and p
– Requires knowledge of x and y, which requires factoring N
– Factoring is exponential time algorithm, so if the number to be

factored is big enough, it takes a very long time...
3

Exercise (again, very simplified)

• Code GETURL as A=01, B=02…E=05,G=07,L=12,R=18,T=20,U=21:
– ________________________________

• Generate 3 random primes: 47, 79, 97 (way too small in real life!)
• Use s= __, x= __, y= __. Verify that p= 37 using

– (ps) mod (x-1)(y-1) = 1
• Compute N= xy: ______
• Break the message into three 4-digit chunks:

– _____ _____ _____
• Create ciphertext: raise each chunk to the p power % N: (% =mod)

– _____ _____ _____
– 070537 % 3713=0564, 202137 % 3713= 1645, 181237 % 3713= 3378

• Retrieve plaintext: raise each chunk to s power % N:
– _____ _____ _____
– 056497 % 3713=0705, 164597 % 3713= 2021, 337897 % 3713= 1812

4

Solution

• Code GETURL as A=01, B=02…E=05,G=07,L=12,R=18,T=20,U=21:
– 070520211812

• Generate 3 random primes: 47, 79, 97 (way too small in real life!)
• Use s= 97, x= 47, y= 79. Verify that p= 37 using

– (ps) mod (x-1)(y-1) = 1
• Compute N= xy: 3713
• Break the message into three 4-digit chunks:

– 0705 2012 1812
• Create ciphertext: raise each chunk to the p power % N: (% =mod)

– 0564 1645 3378
– 070537 % 3713=0564, 202137 % 3713= 1645, 181237 % 3713= 3378

• Retrieve plaintext: raise each chunk to s power % N:
– 0705 2021 1812
– 056497 % 3713=0705, 164597 % 3713= 2021, 337897 % 3713= 1812

5

How secure are AES and RSA?

• Questions to ask:
– Is algorithm correct?

• Yes, though if we learn to factor large numbers, RSA is
dead

– Is algorithm coded correctly, including chaining,
digests, padding of short blocks, etc?
• Often a vulnerability: 2010 ASP.NET break

– Is key management correct and secure?
• Often a vulnerability; keys protected by weak

passwords, revocation lists not checked, etc.
– Can a message be cracked by brute force?

• Only if key is too short: 128-256 bits for symmetric is ok,
1024-2048 for RSA is ok.

• Only keys for high value assets (defense, nuclear, etc.)
merit the effort to crack them

6

Ciphers

• When a message is longer than the key (the usual
case)
– We exclusive-or (add bits without carrying) each block of

plaintext with the previous block of ciphertext before
encrypting it

– This disguises any patterns in plaintext
• Repeated plaintext is coded differently each time it appears

EK EK EK

Initial
value

P1

C1

P2 P3

C2 C3
7

Message digests

• Cryptographic hashes are a one-way function that
creates a short number (128 to 160 bits, often)
that is very unlikely to be generated by any other
message
– Many hashes are the last (chained) block cipher of a

message, so it depends on the entire message
– It’s used to verify that the message has not been altered

• Common message digests:
– MD4: 3 rounds, 128 bit hash
– MD5: 4 rounds, 128 bit hash
– sha1: 5 rounds, 160 bit hash
– sha256: 64 rounds, 256 bit hash
– sha512: 80 rounds, 512 bit hash

8

Digital signatures/certificates

• Use public/private key in opposite fashion from message
encryption to provide sender authentication
– Sender signs document with her private key
– Receiver decrypts with sender’s public key
– If the decryption is correct, message must have been sent by sender

• Compare:
– Encryption:

• Sender encrypts message with receiver public key and sends
• Receiver decrypts with receiver’s private key
• This allows any sender to send secure messages to any receiver
• Secure Sockets Layer(SSL) distributes public keys– covered next

– Digital signature:
• Sender signs message with own private key and sends
• Receiver decrypts with sender’s public key
• This allows any receiver to verify the sender of any message

Sender
signature

Digital
signature

Sender
signature

Sender’s
private

key

Sender’s
public

key

Sender Recipient

9

Digital signatures/certificates, cont.

• Digital signatures are implemented using certificates
– These are the MIT certificates we all have on our computers

• Problems with digital signatures
– Spoofer can cut and paste encrypted signature from old

message to new faked message.
• One solution is for receiver to send ‘challenge phrase’ to

sender
• Sender then encrypts with sender private key and sends to

receiver, who can check if it’s what she sent initially
– Spoofer can alter parts of the message

• Solution is message digest functions to provide integrity
check

– Message digest is function run on entire message that
produces short digest, often 128 bits (note that 2128 is a very
big number of combinations!)

– Send digest and message. Receiver runs digest algorithm on
message and checks if same value

10

Glossary

• RSA: Rivest-Shamir-Adleman: asymmtric
encryption algorithm

• AES: American Encryption Standard: symmetric
encryption algorithm

• MDx, sha-x: hash or message digest functions to
ensure message integrity

• SSL: Secure Sockets Layer, protocol for entire
transaction

• TLS: Transport Layer Security, successor to SSL

11

MIT OpenCourseWare
http://ocw.mit.edu

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

