1.264 Lecture 3

Time and resource estimation

Next class: Read chapters 7, 8. Hand in exercise solution <u>after</u> class Form groups for homework. Hand in today's exercises on paper.

Choose system implementation goal

- Product, time, cost: you can lock 2 of the 3
- What do you need? Examples (not exhaustive):
 - High certainty in meeting a schedule constraint
 - If schedule is fixed, either product or resources are fixed but not both
 - Runaway prevention (with bad past history)
 - Low level of process maturity, recovery mode
 - Predictability (tied to budget, other programs)
 - Staff and schedule are fixed. Product must flex.
 - Lowest cost
 - Requires good people, good process
 - Desire for free overtime (startups, cheap companies)
- These are not the same problem
 - Choose a method appropriate to the problem
 - Tables next time: fastest possible, most efficient, nominal ²

Exercise

- What do you need?
 - Change from uniform to regional assortments in retail supply chain in a large retailer
 - Sourcing key inputs from new overseas suppliers for holiday season
 - Implementing a new bus location system for a public transit agency that displays on smart phones and PCs
 - There have been many failures in the past.
 - Implementing electronic health records at a large hospital
- Take 10 minutes:
 - Recommend a goal
 - List top 3 factors or key unknowns to be researched early in the decision

Solution (one of many)

- What do you need?
 - Change from uniform to regional assortments in retail supply chain in a large retailer
 - Lowest cost
 - Sourcing key inputs from new overseas suppliers
 - High certainty in meeting schedule
 - Implementing a new bus location system for a public transit agency that displays on smart phones and PCs
 - Runaway prevention
 - Implementing electronic health records at a large hospital
 - Runaway prevention. Difficult to tell doctors what to do.

Estimation

Image by MIT OpenCourseWare.

Estimation steps: software example

Estimate size of project:	(product)
 Methods/behaviors (formerly function points modified, written and/or implemented) to be configured,
 Lines of code: depends on language, tools 	(technology)
Estimate effort (person-months)	(process/people)
Estimate schedule (calendar-months)	""
	,
Provide estimates in ranges and refine f precision as project progresses	or increasing
	 Lines of code: depends on language, tools Estimate effort (person-months) Estimate schedule (calendar-months) Estimate team size as (person-months / This is just algebra. Team size is not an inde Provide estimates in ranges and refine f precision as project progresses

- Use the convergence curve
- This process is also used for non-software projects
 - Non-software metrics harder to find. Track your own.

Project size estimation (product)

• Count:

- Inputs: Web pages, forms, messages from other systems, XML documents
- Outputs: Web pages, reports, graphs, messages, XML documents
- Inquiries: simple Web inputs, generally producing a single output
- Logical internal files: tables or files in own database
- External interface files: tables or files used from other systems or databases

Method (function point) multipliers

Function-Point Multipliers

	Function Points		
Program Characteristic	Low Complexity	Medium Complexity	High Complexity
Number of inputs	X 3	X 4	X 6
Number of outputs	X 4	X 5	X 7
Inquiries	X 3	X 4	X 6
Logical internal files	X 7	X 10	X 15
External interface files	X 5	X 7	X 10

Image by MIT OpenCourseWare.

Effort estimation (method/function point example)

Example of Computing the Number of Function Points

		Function Points	
Program Characteristic	Low Complexity	Medium Complexity	High Complexity
Number of inputs	6 X 3 = 18	2 X 4 = 8	3 X 6 = 18
Number of outputs	7 X 4 = 28	7 X 5 = 35	0 X 7 = 0
Inquiries	0 X 3 = 0	2 X 4 = 8	4 X 6 = 24
Logical internal files	5 X 7 = 35	2 X 10 = 20	3 X 15 = 45
External interface files	9 X 5 = 45	0 X 7 = 0	2 X 10 = 20
Unadjusted function-point total			304
Influence multiplier			1.15
Adjusted function-point total			350

Image by MIT OpenCourseWare.

Influence multipliers

- Data communications
- Distributed processing
- Heavy use
- Performance
- Transaction rate
- Online data entry
- End user efficiency

- Online update
- Complex processing
- Reusability
- Installation ease
- Operational ease
- Multiple sites
- Facilitate change

Rate each element from 0-5 Influence multiplier is 0.65 + 0.01(sum of elements), varies between 0.65 and 1.35

Effort estimation: lines of code (technology)

Cont....

Language	Level	Statement per Function Point
Assembler	1.0	320
С	2.5	125
C++	6.5	50
AWK	15.0	25
Perl	15.0	25
Lisp	5.0	65
Ada 83	4.5	70
Pascal	3.5	90
Focus	8.0	40
Oracle	8.0	40
Sybase	8.0	40
Paradox	9.0	35
Modula 2	4.0	80
dBase IV	9.0	35
Fortran 77	3.0	110
GW Basic	3.25	100

Language	Level	Statement per Function Point
Quick Basic 3	5.5	60
Visual Basic 3	10.0	30
Cobol (ANSI 85)	3.5	90
Macro assembler	1.5	215
SAS, SPSS, other statistics packages	10.0	30
Smalltalk 80; Smalltalk/V	15.0	20
Excel, Lotus 123, Quattro Pro, other spreadsheets	≈ 50	6

Approximate Language Levels

Image by MIT OpenCourseWare.

Ignore "level"

Exercise

- If you had a requirements document with:
 - 10 Web input pages,
 - 15 output pages (reports),
 - 20 (internal) database tables, and
 - no inquiries or external files,
- How many function points would it contain?
 - Assume medium complexity for each page, report, table
 - Assume influence multiplier = 1.0
- Technology:
 - If you wrote the system in C, how many lines of code would it have?
 - What if you used perl (a simpler scripting language)?
 - If you could do it in perl instead of C, would you?
- How do you decide what technology to use?

Solution

- If you had a requirements document with 10 Web pages, 15 reports, 20 database tables, and no inquiries or external files, how many function points would it contain?
 - Assume influence multiplier = 1.0
 - About 315 function points, if each item is medium complexity
- If you wrote the system in C, how many lines of code would it have?
 - About 40,000 lines of C
 - What if you used perl?
 - About 8,000 lines of perl
- If you could do it in perl instead of C, would you?
 - Yes. The system is 20% the size and will take <20% of the resources to write (scale diseconomies)
- How do you decide what technology to use?
 - The one that is capable enough to solve the problem and yields the fewest lines.

Hand in

- Upload your answers to the goals and resource estimation exercises
 - On paper. Make sure your name is on it. You may hand in one for your group. Or...
 - Upload to course Web site, in Word, Notepad, or any other common format

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.