1.264 Lecture 33

Telecom: Wired LAN, WAN

Next class: Green chapter 8, 32. Exercise due before class

Exercise

- What's on a telephone pole?
 - Three types of network; name them
- Which is highest on the pole? Why?
- Which of these are point to point connections?
- Which are shared (point to many)?
- Which of these can carry data?
- Which of these can carry voice?
- Which have competitive (open) access?
- What type(s) of wiring does each use?

Solution

- What's on a telephone pole?
 - Electric
 - Phone
 - Cable TV
- Which is highest on pole? Why?
 - Electric, high voltage/current
- Which of these are point-to-point connections?
 - Phone only
- Which are shared (point-to-many)?
 - Electric, cable
- Which can carry data?
 - Phone, cable, electric
- Which can carry voice?
 - Phone, cable, electric
- Which have competitive access?
 - Phone: unbundled to CLEC
 - Cable: not competitive
 - Electric: distribution monopoly, generation competitive
- What type(s) of wiring does each use?
 - Phone: copper, fiber
 - Cable: coax, fiber
 - Electric: copper

Telecom systems management

- Your project/system must estimate the amount of data to be exchanged with partners/servers

 Warehouse RFID example from last lecture
- You must choose appropriate technologies
 - Wired: higher bandwidth/reliability (~gigabits/sec/circuit)
 - Wireless: mobile, flexible, low bandwidth (~megabits/sec/cell)
- You must choose between build, lease, or service
 - Depends on right of way, scale
- You will interconnect different network types
 - Local area (LAN), metro area (MAN), wide area (WAN)
- Your networks will be standards based
- You must choose carriers, bandwidths, service levels, costs, etc., similar to physical transport
 - You are likely to need a lot of bandwidth

Telecom bandwidth

- Bandwidth is a key issue
 - All data carried over analog (continuous) circuits at the physical level
 - None were designed for data: telecom circuits for voice, broadcast and CATV for radio and TV
 - All have been repurposed to carry data while retaining their historic physical structure (\$\$\$ existing capital)
 - Analog bandwidth measured in Hz: cycles/second
 - Wireless communications can carry 2 bits/Hz in 5 GHz band
 - Wired communications have vastly more bandwidth
 - Formula for digital bandwidth based on signal/noise ratio
 - These factors determine the building blocks you'll use
 - Most channels have more bandwidth than 1 user needs
 - Multiple users are multiplexed (shared) on comm channels

Telecom networks

- Data travels over different network segments
 - LAN at your site: cheap, high bandwidth (1 Gbps+)
 - Connection from your site to local switch/cable headend:
 - Copper: ~5 Mbps, cost variable
 - CATV: ~20 Mbps, cost variable
 - Fiber: essentially unlimited, cost variable
 - Telecom or CATV network: fiber, high bandwidth, cheap
 - Synchronous optical network (SONET) rings
 - Very high availability (99.999%), recover from many faults
 - Data circuits are permanent, unlike voice calls
 - Data packet flow over the permanent network is variable
 - Carrier IP networks handle most voice, data and video
 - Large routers exist at carrier switch facilities for IP traffic
 - Carrier networks are generally not encrypted; rely on physical security

Review: Data communication protocols

Image by MIT OpenCourseWare.

Review: TCP/IP

Image by MIT OpenCourseWare.

LANs and WANs

And/or MAN if within a metro area

Local area network (LAN)

- High speed, privately owned, short range network
 - IEEE 802.3 or Ethernet is nearly universal
 - Speeds of 10Mbps to 1Gbps (1000Mbps)
 - Limited range: building or campus (1-5 km typical length)
 - No permission for right of way on streets
 - Carriers can extend Ethernet over metro area using Carrier Ethernet, a metro-area network (MAN)
 - The technology is not Ethernet per se, but it looks like and is managed like Ethernet from the customer's point of view
 - We cover MANs later.

Repeater, bridge/hub, router, gateway at customer site

Image by MIT OpenCourseWare.

Ethernet (initial wired, current wireless version)

Image by MIT OpenCourseWare.

Protocol is carrier sense multiple access/collision detection (CSMA/CD). Earliest wired Ethernet used this protocol also, now superseded.

Exercise- Maximum traditional LAN length

- Maximum LAN length: L= ct/2
- Speed of signal: c (2 x 10⁸ m/sec, 2/3 speed of light)
- Ethernet speed: s (e.g., 10⁸ bits/sec, or 100Mb/sec)
- Slot time t: 512/s (min Ethernet frame size=512 bits)
- Compute L for a 100 Mb/sec LAN (s)
- Compute L for a 1 Gb/sec LAN (s)
- You'll see the 1 Gb/sec LAN isn't feasible with traditional LAN. 1 Gb/sec LAN uses:
 - Full duplex (two wires per station, one to send, one to receive)
 - Switches only, no repeaters or bridges, and no collisions
 - Fiber optics (often), with 500 to 5000 meter segments
 - Distance limited by signal fading, etc. (more on this later)

Solution

- Maximum LAN length: L= ct/2
- Speed of signal: c (2 x 10⁸ m/sec, 2/3 speed of light)
- Ethernet speed: s (e.g., 10⁸ bits/sec, or 100Mb/sec)
- Slot time t: 512/s (min Ethernet frame size=512 bits)
- Compute L for a 100 Mb/sec LAN (s)
 - L= $(2x10^8 * 512/10^8)/2 = 512$ meters= 0.5 km
- Compute L for a 1 Gb/sec LAN (s)
 - L= (2x10⁸ * 512/10⁹)/2 = 51.2 meters= 0.05 km
- Even though collisions are avoided in full duplex, switched LANs, signal attenuation and other losses are limiting
- LANs typically are 5 km or less

WAN: Telecom carrier network facilities

- Wide area networks (WANs)
- Carried over same physical facilities as voice (next lecture)
 - Local loop, local switch, tandem switch, trunk
- Carried on permanent circuits of much higher bandwidth than for a single voice call; no switching
- Protocols based on ISO 7-layer model
 - Mostly HTTP (Web services), tcp, and ip
 - Regulated by routers and data switches
- Data sessions are highly variable compared to voice, e.g.,
 - Web browsing
 - Bank ATM machine
 - Database backup
 - LAN interconnection
- Data addresses are Ethernet addresses or IP addresses
 - Not phone numbers
- Carrier data network speeds 56 kbps to 40 Gbps per circuit
- Carrier voice network secure without encryption

Wide area networks (WANs)

- Differences from metro-area (MAN) or local-area (LAN) net:
 - Global in scope
 - Usually provided by multiple carriers (one is lead)
- Legacy WANs are present but usually not good choices for new data comm needs:
 - Private (point to point) circuits: expensive
 - Dialup circuits: low bandwidth
 - Frame relay: still viable, being superseded by IP (cost, reach)
 - Multidrop networks
 - Used for bank ATMs, point-of-sale (POS) terminals, lottery terminals
 - Now that banks, stores have general Internet access, encrypted ATM and POS traffic often goes over the general access
 - Packet networks (X.25): expensive, limited bandwidth
 - VSAT (satellite): widely dispersed, low bandwidth service
- IP-based networks becoming dominant
 - Typically over a business-only, carrier-provided infrastructure separate from the open Internet

Carrier/public network: major components

Image by MIT OpenCourseWare.

Telecom service areas

Image by MIT OpenCourseWare.

SONET

- SONET uses time division multiplexing (TDM)
 - All clocks in the network sync to a master clock
 - Multiplexer/demultiplexers start/end a SONET circuit
 - Add/drop multiplexers insert/extract subset of signals
- An OC-1 signal is 51.84 Mbits/sec
 - A voice call is 64 kbits/sec, or 0.064 Mbits/sec
 - Maximum capacity= 51.84/0.064, or 810 voice channels
 - However it has about 15% overhead (framing, control)
 - It actually carries 672 voice channels
 - Or 7 to 28 video channels (1.5 Mbps to 6 Mbps)
- An OC-192 signal is 192 times higher capacity
 - Maximum SONET rate (though fiber can go higher)

Fiber optic (SONET) rings

Image by MIT OpenCourseWare.

Exercise: SONET

- You are a large airline with a single server site that handles all your reservations
 - Average transaction is 10,000 bytes (80,000 bits)
 - You must handle 2,000 transactions/second
- Where can you locate your servers on the network in the previous slide:
 - At central office A, in a telco colocation site?
 - At a SONET hub on one of the OC-12 rings?
 - At a multiplexer on one of the OC-3 rings?
- Compute the server bandwidth and compare to the network bandwidth
 - OC-3 is 3 * OC-1; OC-12 is 12 * OC-1; OC-48 is 48 * OC-1

Solution

- You need 80,000 * 2,000= 160 Mbits/sec
- OC-1 is 51 Mbits/sec
- OC-3 is 155 Mbits/sec. Not enough
- OC-12 is 622 Mbits/sec. Clearly enough
- You need to be at central office A or at a SONET hub on one of the OC-12 rings.
 - You don't need the full OC-12 or OC-48 capacity.
 Carriers will sell you an appropriate fraction.

Glossary

- Repeater: layer 1 LAN device
- Bridge: layer 2 LAN device
- Router: layer 3 LAN device
- Gateway: layer 7 LAN device
- VSAT: Very Small Aperture Terminal (satellite)
- X.25: Packet service, pre-Internet (replaced by IP)
- PBX: Private branch exchange, to switch voice calls in an office (now mostly IP-PBX)
- LATA: Local access and transport area, defines service areas for regulatory, pricing issues

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.