1.264 Lecture 37

Telecom: Enterprise networks, VPN

Enterprise networks

- Connections within enterprise
- External connections
 - Remote offices
 - Employees
 - Customers
 - Business partners, supply chain partners
 - Patients...and other actors with special requirements
- Principles of enterprise network design
 - Standards based
 - Secure
 - Reliable: disruptions affect all external connections
 - Quality of service: latency, throughput, services, ...

Building blocks of enterprise network

- Local area networks
- Wide- or metro-area networks: include 1 or more of:
 - Private lines (point to point circuits)
 - "Carrier Ethernet" MAN over carrier fiber in metro areas
 - Virtual private net (VPN) over Internet
 - Private or carrier-provided networks separate from Internet
 - Frame relay (pre-Internet, still used but being superseded)
 - Label switched (MPLS), over carrier IP network
 - Covered later in this lecture
- Voice network: includes one or more of:
 - Integrated with data network
 - Private lines shared between data and voice
 - Voice carried over IP or MPLS network
- Video network
 - Usually carried as service over data network

Virtual private networks (VPN)

Image by MIT OpenCourseWare.

Virtual private networks (VPNs)

Definition: VPN is set of sites that

- Communicate over the open Internet but
- With the security and management capabilities of dedicated circuit or frame relay network
- Supporting applications without modification
- With simple management for admins and users
- And with low overhead and good communications performance
- Typically handle data only but can handle voice, video
- VPN basic functions
 - Authentication (identity), authorization (privileges)
 - Establishment of secure tunnel (path) in network

VPN technology

- VPN <u>tunnel</u> encapsulates data of one protocol inside the data field of another protocol
 - VPN encrypts corporate data inside IP packet data field (which is managed by TCP, which is called by HTTP)
 - HTTP and TCP data is inside the IP packet and is encrypted
 - The corporate data is encrypted via the VPN's security protocol (symmetric, asymmetric keys, message digests)
 - SSL is frequently used; Kerberos-like options also available
- VPNs operate at layer 2 (Ethernet) or layer 3 (IP)
 - Layer 3: Routers use IP information to route
 - Most common: Easier to manage, but lower performance
 - Layer 2: uses Ethernet addresses; corporation responsible for routing packets across WAN and LANs
 - Harder to manage, but better performance
- VPNs operate over DSL, cable, etc.
 - Simple network topology (all links to/thru central point)
 - Limited redundancy, resiliency

VPN tunnel

- Internet carries packet between routers R1 and R2
- Packet is encrypted, and intruder only sees R1 and R2 IP addresses
- Actual IP addresses (100 and 200) cannot be seen, nor the packet contents

VPN terminology

- Intranet
 - Portion of VPN connecting internal sites
- Extranet
 - Portion of VPN connecting external sites
- Security protocols
 - Secure Sockets Layer (SSL)
 - IPsec (secure IP standard) at layer 3
 - Can encrypt entire packet (tunnel mode) or just the data field (transport mode)
 - All devices must share a common (public) key, in digital certificate
 - Devices negotiate secure tunnel using Internet Key Exchange (IKE) protocol
 - Layer 2 tunneling protocol (L2TP)
 - Requires pre-arranged paths between devices or to/from secure server

Enterprise routing: IP and other protocols

Image by MIT OpenCourseWare.

Multiprotocol Label Switching (MPLS)

- Label edge routers (LERs) assign a label that defines the path the packet will take through the IP network
 - Routing happens only once, at edge
 - Routing at interior routers (label switched routers, or LSRs) is done in hardware, not a software lookup of IP routing tables
 - Much faster, cheaper
 - A stack of labels allows complex, hierarchical networks
 - Label distribution protocol (LDP) used to distribute labels to all LSRs and LERs, using TCP/IP
 - MPLS allows QoS, security (strict traffic rules)
 - MPLS VPNs operate at layer 2 or layer 3
 - Corporate routers don't need to support MPLS; they connect to LER via IP
 - MPLS is a fiber-only technology, national but not global scope (yet), complex network, "Ethernet-like" operation

Multiprotocol Label Switching

Image by MIT OpenCourseWare.

Network neutrality debate...

Virtual LANs

 MPLS is sometimes described as implementing a virtual LAN, or VLAN: set up LANs in software

Image by MIT OpenCourseWare.

Technology changes

- Next slide compares X.25 and frame relay
 - X.25 was developed for copper or radio long-haul networks with high error rates
 - Link-by-link error correction as a message travels across the network
 - Assumes 'dumb' equipment at the edges, so the X.25 protocol takes full responsibility for delivering messages correctly
- Frame relay (or any other protocol carried on fiber optics such as TCP/IP)
 - Relies on low fiber optic error rate. No link-by-link error correction, just a retransmission triggered by end node if message not correctly received
- A wireless long haul net would need roughly the same protocols as X.25
 - Smart edge devices make it easier than X.25

Frame relay vs X.25

Image by MIT OpenCourseWare.

Frame relay/Internet vs. X.25

- Difference between reliable and unreliable networks
 - Fiber has error rate of 1 bit in 10¹⁴; can correct end-to-end
 - Wireless has error rate of 1 bit in 10⁶; must correct link-bylink
- Difference between smart and dumb terminals
 - Formerly, terminals had no CPU and just displayed what the communications line sent to them
 - Could not detect or correct errors
 - PCs, servers, smart phones as terminals can correct and detect errors
- "Hollowing out of the network"
 - Network (switches, etc.) used to have all the intelligence
 - Now network is just a set of 'bit pipes'
 - Edge devices have the intelligence

Telecom convergence

- Convergence: Moving all voice, data and video traffic onto Internet
 - Consumer service reasons:
 - Smart cards and mobile phones: browsers, phone as payment medium, smart posters, cameras
 - E-commerce generally
 - End of the personal computer (PC) as we know it, for most users
 - Cost reduction: one network versus many
 - Private nets morph into carrier nets with Internet protocols
 - Increased mobility services
 - Tying wireless access to fiber optic backbone flexibly
 - Barriers:
 - Low quality, chaos of open Internet to reach customers
 - Security to reach customers
 - Broadband in the 'last mile' to reach businesses and homes

Glossary

- VPN: Virtual private network
- IPsec: Secure IP (layer 3 security used in VPNs)
- L2TP: Layer 2 tunneling protocol (VPN)
- PSTN: Public switched telephone network, or carrier network
- MPLS: Multiprotocol Label Switching, a WAN technology to connect LANs transparently
 - LER: MPLS Label Edge Router
 - LSR: MPLS Label Switched Router (interior)
 - LDP: MPLS Label Distribution Protocol
- QoS: Quality of service

Steps and skills for building these systems are same as we've covered in class this semester

- Software engineering and project management
 - People, process, product, technology dimensions
 - Select development method (often spiral model)
 - Requirements, design, resource estimation, implementation, QA
- Process modeling
 - UML: describe use cases, states, activities, classes, components
 - Used in requirements, scoping, design early; architecture late
- Data modeling
 - Model business rules, verify with users (internal, customers, ...)
 - Normalization, referential integrity
- Database
 - Relational databases, SQL at core of applications, Web
 - Databases read/write XML

Steps, continued

- World Wide Web:
 - Connect clients and servers: HTTP, XML, Web services
 - Use HTTP, XML as universal data access
 - XML allows human, machine and document interpretation
 - XML documents include business rules, database schema
- Security
 - Protocols codify rules, principals, risks, ...
 - TLS and Kerberos
 - TLS encryption, certificates, digital signatures
 - People, process, product, technology dimensions again
- Networks
 - Multi tier : Web, application, database
 - 7 layer data comm model: HTTP (7), TCP/IP (4/3), Ethernet (2)
 - LANs, MANs, WANs: LANs, MANs are Ethernet, WANs vary
 - Fiber optic core, wireless/copper/CATV for access
 - Use private/carrier network, not open Internet in many cases

Course summary: process

- If you spent 12 hours per week for 14 weeks, that's 168 hours, or 4 40 hour weeks
- Ready for second spiral after 8 person weeks of work (4 person weeks times 2 people)
 - This can be done in the wasted "up-front" time to prepare for an anticipated project
 - It will usually take this long because you'll usually be learning a new domain and/or new technology
- By using the spiral model and being able to do requirements, UML, data models, SQL, Web sites, initial security approach and initial telecom approach, you can:
 - Work effectively with IT staff
 - Manage engineering or logistics projects with IT components
- By knowing technical areas covered in class, you can:
 - Specify, design and build databases, Web sites, etc. as a consultant

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.