1.264 Lecture 4

Time and resource estimation, part 2

Next class: Read CMMI papers. Hand in case studies by noon before class

Schedule estimation from tables

Shortest possible schedule. (You can’t beat this.)
— Talent from top 10%, years of experience in environment
— ldeal management, all staff available day 1
— Requirements known day 1 and don’t change
— Tools, offices, methods are ideal

Efficient schedule.
— Talent from top 25%, low turnover
— Competent management, staff available as needed
— Requirements changes are minor (5%); tools, offices are
effective
Nominal schedule
— Talent from top 50%, turnover 12% per year
— Some familiarity with tools and environment

Schedule estimation from tables

Shortest Possible Schedules

Systems Products Business Products Shrink P
Products
tem Size Schedule Schedule Eff
es of code)| (months) ths) | (months) an- hs)
s | s [a2 | 8 |

oo [o |
000 [v |
10
T
T
I
E
E
z
s
T
i

17

18

19

20

2

:

300,000
400,000
500,000

140,000

Image by MIT OpenCourseWare.

Schedule estimation from tables

Efficient Schedules

Systems Products Business Products Shrink-Wrap
Products

Schedule Effort
(months) |(man-months)

_- |58 |

-_-_“_
28000 | 12 | 70 [7 | 4 [o | = |
o000	13	o7 [8	2	o	=
3s000	14	120 [8	24 [10	39	
0000	15	140	o	s [10	49
4s00	16 [w0 [o	s [m	57		
-_-_-_

ECE w0 | a9] 12 |

60,000

70,000
80,000

Lo |
I I N N N I N N
o000 | s | sw [1e [s | a6 | i
Ciaoo0 | 5 | o | 15 | as | | am
Cwoow | w | o | | e e | w0 |
“ieooc0 | za | o0 | a | se0 | w® | w0
-——-—
T T I N U N R B R
E ST S R S N
oo | an | zo0 | | ae | 2 | e

Image by MIT OpenCourseWare.

Schedule estimation from tables

Nominal Schedules

tem Size | Schedule Effort Schedule
(lines of code) | (months) n-months) | (months) -mo s)

oo	w0	e	6	o	7	1
o0	12	76	7 [15 [8	a4		
2000 [14	mo [8	&	o [s			
2soo0	15	140	o [27 [10	ea		
o0 [16	s	o	s	m	s	
sso0	w	20	10 [e [12	71		
-_-_
--_

-_-_

70,000 -_-_-_

sooo0	24	0	14	s	17	210
oo [s	w0 [15	w0 [w	a0			
woo0	26	eo0	15 [w0 [18	210		
120000	28	1o	16	a0 [2 [35		
w0000	0	120	17 [20 [2	400		
aoo00	et	3o	24	e0	2 [1000	

Image by MIT OpenCourseWare.

Questions

How long would it take to write a 30,000 line
systems product with the three different
approaches (fastest, efficient, nominal)?

— How large would the team be in each case?

— Explain the differences

How long would it take to write 50,000 line
systems, business and shrink-wrap products with
a nominal approach?

— How large would the team be in each case?

— Explain the differences

Graph calendar months, person months versus
lines of code for a systems product, any approach
— Describe whether it’s linear or nonlinear
— Just graph a few points; you don’t need all of them
— If nonlinear, in what way? Economies or diseconomies of
scale?

You don’t need to apply ranges in this exercise

Answers

30,000 line systems product with the three different approaches?
— 9 months fastest possible
— 13 months efficient
— 16 months nominal
How large would the team be in each case?
— 12 people fastest possible
— T7-8 people efficient
— 11-12 people nominal
Explain the differences
— Staff quality, process maturity (people, process)
50,000 line product with nominal approach
— 20 months system, 11 months business, 14 months shrink-wrap
Team size
— 18 system, 6.5 business, 8 shrink-wrap
Explain the differences

— Systems software requires much more design, care in implementation,
testing, and will have many more bugs
— Shrink wrap software must be more general and more easily configured
and supported than business software
Graphs: Nonlinear. Resources (person months) have diseconomies
of scale. Schedule time growth less than linear. Team size grows
very quickly.

Estimate refinement

Example of Single-Point-Estimation
History

Detailed design specification

Image by MIT OpenCourseWare.

Example of a Range-Estimation
History

Detailed design specification 145-180

Image by MIT OpenCourseWare.

Scheduling problems

Developers/analysts/consultants underestimate
task durations by 20-30% on average
— And omit 30-50% of tasks

Average small project estimate is off by 100%
— Big projects are worse
Once deadlines are missed, more effort is spent
explaining and re-planning
Schedule pressures affect morale, quality
— 40% of software errors are due to schedule pressure

— Gambling in technical approach often occurs
— This occurs in non-software projects as well

Scheduling pressures

« Causes
— Wishful thinking by customers, managers
— No awareness of software estimation methods

— Poor negotiating skills
« 75% of developers are introverts, only 33% of population is

« Marketers, managers tend to be 10 years older and negotiate
for a living

» Developers oppose negotiating tricks (high initial estimates,
etc.)

e Cures

— Principled negotiation
« Separate people from positions (cooperate, explore options)
* Focus on interests, not positions (find underlying needs)
* Find mutual gains (phasing, fewer features, add resources)

* Insist on using objective criteria (don’t negotiate the estimate
itself)

10

Scheduling: Feature set control

Early project: feature set reduction
— Minimal spec

— Requirements scrubbing

— Versioned development

Mid-project: feature creep control

— Change analysis, change control board
— Versioned development

— Short development cycles

Late project: feature cuts

— Eliminate low priority features

Remember:

— A 50% cut in project size yields a 75% reduction in
resources and about a 50% reduction in schedule

11

Scheduling: Recovery

 Most projects are in recovery mode much of the time
— Primary problem is not how to finish quickly, but how to finish
at all
 Options
— Cut softwarel/project size
— Increase productivity with short-term improvements
— Slip the schedule

 Recovery plan

— People: improve morale, correct major personnel and major
leadership problems

« Adding people to a late project only makes it later
— Process: fix classic errors, miniature milestones, risk mgt
— Product: stabilize requirements, cut features, fix bugs

12

Summary: resource estimation

Almost always use spiral/agile model: Multiples of:

— Requirements, design, implementation, QA
Use requirements and desigh documents to
estimate resources using function points

— Requirements define product scope
— Choose technology, determine lines of code

Estimate schedule, personnel

— System type (systems, business, shrink wrap)
— Process type (fastest, efficient, nominal, other)
— Apply convergence graph to all estimates

Adjust as things change
— Spirals, negotiation, feature management
— Mini milestones, risk mgt, avoid classic mistakes
This works in non-software projects just as well
— Shortest possible schedule: more expensive

— Bigger project than past: diseconomies, more expensive
— Less talented team than usual: longer, more expensive

]

MIT OpenCourseWare
http://ocw.mit.edu

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

