1.264 Lecture 4

Time and resource estimation, part 2

Next class: Read CMMI papers. Hand in case studies by noon before class



Schedule estimation from tables

Shortest possible schedule. (You can’t beat this.)
— Talent from top 10%, years of experience in environment
— ldeal management, all staff available day 1
— Requirements known day 1 and don’t change
— Tools, offices, methods are ideal

Efficient schedule.
— Talent from top 25%, low turnover
— Competent management, staff available as needed
— Requirements changes are minor (5%); tools, offices are
effective
Nominal schedule
— Talent from top 50%, turnover 12% per year
— Some familiarity with tools and environment



Schedule estimation from tables

Shortest Possible Schedules

Systems Products Business Products Shrink P
Products
tem Size Schedule Schedule Eff
es of code)| (months) ths) | (months) an- hs)
s | s [ a2 | 8 |

oo [ o |
000 [ v |
10
T
T
I
E
E
z
s
T
i

17

18

19

20

2

:

300,000
400,000
500,000

140,000

Image by MIT OpenCourseWare.




Schedule estimation from tables

Efficient Schedules
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Schedule estimation from tables

Nominal Schedules
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Questions

How long would it take to write a 30,000 line
systems product with the three different
approaches (fastest, efficient, nominal)?

— How large would the team be in each case?

— Explain the differences

How long would it take to write 50,000 line
systems, business and shrink-wrap products with
a nominal approach?

— How large would the team be in each case?

— Explain the differences

Graph calendar months, person months versus
lines of code for a systems product, any approach
— Describe whether it’s linear or nonlinear
— Just graph a few points; you don’t need all of them
— If nonlinear, in what way? Economies or diseconomies of
scale?

You don’t need to apply ranges in this exercise




Answers

30,000 line systems product with the three different approaches?
— 9 months fastest possible
— 13 months efficient
— 16 months nominal
How large would the team be in each case?
— 12 people fastest possible
— T7-8 people efficient
— 11-12 people nominal
Explain the differences
— Staff quality, process maturity (people, process)
50,000 line product with nominal approach
— 20 months system, 11 months business, 14 months shrink-wrap
Team size
— 18 system, 6.5 business, 8 shrink-wrap
Explain the differences

— Systems software requires much more design, care in implementation,
testing, and will have many more bugs
— Shrink wrap software must be more general and more easily configured
and supported than business software
Graphs: Nonlinear. Resources (person months) have diseconomies
of scale. Schedule time growth less than linear. Team size grows
very quickly.




Estimate refinement

Example of Single-Point-Estimation
History

Detailed design specification
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Example of a Range-Estimation
History

Detailed design specification 145-180
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Scheduling problems

Developers/analysts/consultants underestimate
task durations by 20-30% on average
— And omit 30-50% of tasks

Average small project estimate is off by 100%
— Big projects are worse
Once deadlines are missed, more effort is spent
explaining and re-planning
Schedule pressures affect morale, quality
— 40% of software errors are due to schedule pressure

— Gambling in technical approach often occurs
— This occurs in non-software projects as well



Scheduling pressures

« Causes
— Wishful thinking by customers, managers
— No awareness of software estimation methods

— Poor negotiating skills
« 75% of developers are introverts, only 33% of population is

« Marketers, managers tend to be 10 years older and negotiate
for a living

» Developers oppose negotiating tricks (high initial estimates,
etc.)

e Cures

— Principled negotiation
« Separate people from positions (cooperate, explore options)
* Focus on interests, not positions (find underlying needs)
* Find mutual gains (phasing, fewer features, add resources)

* Insist on using objective criteria (don’t negotiate the estimate
itself)
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Scheduling: Feature set control

Early project: feature set reduction
— Minimal spec

— Requirements scrubbing

— Versioned development

Mid-project: feature creep control

— Change analysis, change control board
— Versioned development

— Short development cycles

Late project: feature cuts

— Eliminate low priority features

Remember:

— A 50% cut in project size yields a 75% reduction in
resources and about a 50% reduction in schedule
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Scheduling: Recovery

 Most projects are in recovery mode much of the time
— Primary problem is not how to finish quickly, but how to finish
at all
 Options
— Cut softwarel/project size
— Increase productivity with short-term improvements
— Slip the schedule

 Recovery plan

— People: improve morale, correct major personnel and major
leadership problems

« Adding people to a late project only makes it later
— Process: fix classic errors, miniature milestones, risk mgt
— Product: stabilize requirements, cut features, fix bugs

12



Summary: resource estimation

Almost always use spiral/agile model: Multiples of:

— Requirements, design, implementation, QA
Use requirements and desigh documents to
estimate resources using function points

— Requirements define product scope
— Choose technology, determine lines of code

Estimate schedule, personnel

— System type (systems, business, shrink wrap)
— Process type (fastest, efficient, nominal, other)
— Apply convergence graph to all estimates

Adjust as things change
— Spirals, negotiation, feature management
— Mini milestones, risk mgt, avoid classic mistakes
This works in non-software projects just as well
— Shortest possible schedule: more expensive

— Bigger project than past: diseconomies, more expensive
— Less talented team than usual: longer, more expensive
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