Lecture 18

Leachate and gas production in landfills

Mass balance for MSW landfill

Waste in \rightarrow Leachate + gas + transformed mass + waste remaining

Precipitation and ground-water inflow \rightarrow leachate + moisture in waste

Factors that influence leachate generation

Precipitation

Ground-water intrusion

Moisture content of waste

Particularly if sludge or liquids are disposed Daily cover during filling period Final cover design

Leachate generation at MSW landfill

Estimating leachate generation in active landfill

$$L_A = P + S - E - WA$$

- L_A = leachate from active area
- P = precipitation
- S = pore squeeze liquid from waste
- E = evaporation
- WA = waste moisture adsorption

(all in units of L^3/T)

Precipitation

See image at the Web site of the National Atmospheric Deposition Program, http://nadp.sws.uiuc.edu/isopleths/maps2002/ppt.gif Accessed May 13, 2004.

Pore squeeze liquid

Negligible for most wastes Can be significant for wastewater sludges – measured in laboratory tests

Evaporation

Source: Hanson, R.L., 1991, Evapotranspiration and Droughts, in Paulson, R.W., Chase, E.B., Roberts, R.S., and Moody, D.W., Compilers, National Water Summary 1988-89--Hydrologic Events and Floods and Droughts: U.S. Geological Survey Water-Supply Paper 2375, p. 99-104. http://geochange.er.usgs.gov/sw/changes/natural/et/

Moisture adsorption by waste

Typical initial moisture content of waste	1.5 in/ft	12 cm/m
Field capacity of waste	4 in/ft	33 cm/m
Available moisture adsorption capacity of waste	2.5 in/ft	21 cm/m

Leachate generation at active MSW landfill

Leachate collection system

Example of Leachate Collection System with Sloped Subgrade

Adapted from: Qian, X., R. M. Koerner, and D. H. Gray. *Geotechnical Aspects of Landfill Design and Construction*. Upper Saddle River, New Jersey: Prentice Hall, 2002.

Installing leachate collection pipe

See image at the Web site of Biometallurgical Pty Ltd. www.users.bigpond.com/BioMet/photos/photos1.htm. Accessed May 13, 2004.

Installing drainage layer

See image at the Web site of Biometallurgical Pty Ltd. www.users.bigpond.com/BioMet/photos/photos1.htm. Accessed May 13, 2004.

Leachate drainage layer

Drainage layers are considered as small aquifers:

- flow characteristics defined in terms of transmissivity (or thickness and hydraulic conductivity), length, and width
- Use Darcy's Law to predict flow per unit width
- Darcy's Law may not apply to some geonets, etc., because flow may be turbulent
 - Geonet manufacturers quote the transmissivity of geonets however since there is not a good alternative calculation procedure

Primary leachate collection system (PCLS)

EPA minimum technology guidance regulations in 1985

Requirements:

Granular soil drainage material

30 cm thick

- $K \ge 0.01 \text{ cm/sec}$ (T > 3 x 10⁻⁵ m²/sec = 0.02 ft²/min) (equivalent to sand and gravel)
- Slope > 2%

Include perforated pipe

Include layer of filter soil

Must cover bottom and side walls of landfill (side walls can be difficult to construct and maintain)

Source: U.S. EPA, 1989. Seminar Publication: Requirements for Hazardous Waste Landfill Design, Construction, and Closure. Report Number EPA/625/4-89/022. Center for Environmental Research Information, U.S. Environmental Protection Agency, Cincinnati, Ohio. August 1989. Chapter 1.

Geonet drainage layer

Geonets of equivalent performance can be substituted for sand and gravel drainage layer $T \cong 10^{-4} \text{ m}^2/\text{sec}$ for typical geonet See image at the Web site of Tenax Corporation, Landfill Drainage Design, http://www.geogri ds.com/landfill/ Accessed May 13, 2004.

Geonet installation

See image at the Web site of Tenax Corporation, Installation of Tri-planar drainage geonet at Sarasota landfill project, http://www.geogrids.com/landfill/usa00014.htm. Accessed May 13, 2004.

Leachate collection system

Example of Leachate Collection Pipe and Trench for Double Geomembrane/Compacted Clay Composite Liner System

Drainage pipe

See images at the following Web sites: Binder, B., 2001. "Flatirons Open Space Committee, Index to Picture Collections, Destruction in Wetlands, Spring 2001." http://bcn.boulder.co.us/environment/fosc/pic-index1.html

Lindsell, D., undated. "Pasture Management for Horses." http://www.denislindsell.demon.co.uk/pasture/soils/index.htm

Accessed May 13, 2004.

Pipe installation at landfill

See image at the Web site of Camino Real Environmental Centers, Inc., http://www.creci.com/operations.htm

Accessed May 13, 2004.

Pipe installation

Usually plastic pipe (PVC or HDPE) is used Perforated pipe is manufactured with perforations separated by 120 degrees – centerline between perforations faces down

Drain design

Design goal: h_{max} < 30 cm Keep leachate mounding within 12-inch (30-cm) drainage layer

Drain design configurations

"Saw-tooth" configuration:

Continuous slope configuration:

Mound model for drainage spacing

Mound model gives mounding height for "saw-tooth" as:

$$h_{max} = \frac{L\sqrt{c}}{2} \left[\frac{\tan^2 \alpha}{c} + 1 - \frac{\tan \alpha}{c} \sqrt{\tan^2 \alpha + c} \right]$$

where:

h_{max} is height of mound [L]

L is drain spacing [L]

$$c = q/k$$

- q = infiltration rate [L/T]
- k = hydraulic conductivity of drainage layer [L/T]
- α = slope of ground surface between pipes

Sizing of leachate collection pipes

Pipe size is designed based on Manning's equation

Following design chart gives flow versus slope for range of pipe diameters assuming n = 0.010

Pipe capacity design chart

G.P.M. C.F.S.

U.S. EPA, 1989. Seminar Publication: Requirements for Hazardous Waste Landfill Design, Construction, and Closure. Report Number **F** EPA/625/4-89/022. Center for Environmental Research Information, U.S. Environmental Protection Agency, Cincinnati, Ohio. August 1989.

Leachate collection pipe design

Other design considerations include: pipe strength (to resist crushing) chemical resistance of pipe maintenance – annual pipe cleaning is typical

Leachate collection via riser pipes above single liner

Cross Section of a Landfill Leachate Collection and Removal System

Adapted from: Qian, X., R. M. Koerner, and D. H. Gray. *Geotechnical Aspects of Landfill Design and Construction*. Upper Saddle River, New Jersey: Prentice Hall, 2002.

Leachate sump design

Leachate generally does not leave a landfill by gravity flow—not a recommended design configuration due to difficulty in capturing and controlling leachate

Sumps are depressions in liner filled with gravel to accommodate collected leachate Liner is usually doubled up at sumps

Leachate sump design

Sumps can be accessed by:

- Sideslope riser pipes that follow the landfill sideslope
- Access ways (manholes) or vertical risers But HDPE or special concrete is required due to high sulfates in leachate!
- Leachate is extracted by pumps—often cycled intermittently using level-sensing switches Pump must be sized for lift and anticipated flow

Leachate collection – double liner

Leachate collection pump

Schematic Diagram of Installation of a Leachate Collection Pump in Sideslope Riser Pipe

Adapted from: Qian, X., R. M. Koerner, and D. H. Gray. *Geotechnical Aspects of Landfill Design and Construction*. Upper Saddle River, New Jersey: Prentice Hall, 2002.

Leachate pipes at Crapo Hill landfill

Image courtesy of Peter Shanahan.

New cell and leachate storage at Crapo Hill landfill

Image courtesy of Peter Shanahan.

Leachate sump riser pipe

See image at the Web site of Tompkins County Solid Waste Management Program, Solid Waste Management Division Office. www.co.tompkins.ny.us/solidwaste/collects.html

Accessed May 13, 2004.
- Filter medium keeps sediment out of drainage layer
- Must not clog over decades of use and postclosure
- Design flow parameter is "permittivity" [1/T] $\Psi = k/t$

where

k = cross-plane (vertical) hydraulic conductivity [L/T] t = thickness [L]

Consider drainage layer design goal to limit h_{max}

Q = kiA Q/A = q = k (h_{max}/t) q = k/t h_{max} q = Ψh_{max}

Required permittivity is:

$$\Psi = \frac{\mathsf{q}}{\mathsf{h}_{\max}}$$

where:

q = Q/A = vertical inflow per unit area of landfill [(L³/T)/L²]

h_{max} = maximum allowable mounding height [L]

- Criteria:
 - Soil from above cannot penetrate into filter layer
 - Filter layer must have adequate K
 - Soil from filter layer must not penetrate drainage layer
- See Qian et al. for formulae for soil filter layers and geotextiles

Geotextile clogging

Long-term clogging potential evaluated with gradient ratio test:

Ratio = Hydraulic gradient through 1 inch of soil plus geotextile Hydraulic gradient through 2 inches of soil

Ratio > 3 indicates geotextile will probably clog with sediment

Reference: U.S. EPA, 1989. Seminar Publication: Requirements for Hazardous Waste Landfill Design, Construction, and Closure. Report Number EPA/625/4-89/022. Center for Environmental Research Information, U.S. Environmental Protection Agency, Cincinnati, Ohio. August 1989.

Secondary leachate collection system (SLCS)

EPA requirements for secondary leachate collection systems:

30 cm thick drainage layer

- $K \ge 0.01$ cm/sec (T > 3 x 10⁻⁵ m²/sec = 0.02 ft²/min) (equivalent to sand and gravel same as PLCS)
- Cover bottom and side walls of landfill
- Must have response time for leak detection of less than 24 hours

Secondary leachate collection system (SLCS)

If SLCS performs as desired, it will generate very little leachate

Often drained with geonet – reduces space and eliminates pipe requirement

Response time calculated from velocity by Darcy's Law:

v = k i/n

Calculate separately for side slope and bottom

- For gradient, i, use constructed side or bottom slope
- For geonets use n = 0.5

Prefabricated drains

See the following images at the Web site of American Wick Drain Corporation:

AMERDRAIN® sheet drain and AKWADRAIN[™] strip drain keep landfills dry and remove leachate: http://www.americanwick.com/landfill.html

AKWADRAIN[™] soil strip drain: http://www.americanwick.com/prodstrip.html.

Accessed May 13, 2004.

Landfill Biogeochemistry

1. Aerobic decomposition:

Degradable waste + $O_2 \rightarrow CO_2$ + H_2O + biomass + heat

$$CH_{a}O_{b}N_{c} + \frac{1}{4}(4a - 2b - 3c)O_{2} \rightarrow CO_{2} + \frac{1}{2}(a - 3c)H_{2}O + cNH_{3}$$

2. Acid-phase (nonmethanogenic) anaerobic decomposition

Degradable waste $\rightarrow CO_2 + H_2O + biomass + organic acids$

Landfill Biogeochemistry

3. Methanogenic anaerobic decomposition: Degrade products of Stage 2

 $4H_{2} + CO_{2} \rightarrow CH_{4} + 2H_{2}O$ $CH_{3}COOH \rightarrow CH_{4} + CO_{2}$

Landfill Gas Production

Adapted from: McBean, E. A., F. A. Rovers, and G. J. Farquhar. *Solid Waste Landfill Engineering and Design*. Upper Saddle River, New Jersey: Prentice Hall PTR, 1995.

Problems with landfill gas

Explosive hazard !!!

Methane is explosive above 5 to 15% by volume Subsurface migration offsite (up to 150 m) Accumulation beneath buildings or structures Vegetation stress Toxicity due to H₂S and VOCs Corrosion due to CO₂–created acidity Greenhouse gases and air emissions

Landfill gas composition

Typical Landfill Gas Composition				
Component	Source	Typical concentration (% by volume)	Concern	
Methane (CH_4)	B ^a	50-70	Explosive	
Carbon Dioxide (CO_2)	B	30-50	Acidic in groundwate	
Hydrogen (H_2)	В	<5	Explosive	
Mercaptans (CHS)	В	.1-1	Odor	
Hydrogen Sulfide (H_2S)	В	<2	Odor	
Solvents				
Toluene	C ^b	.1-1	Hazardous	
Benzene	С	.1-1	Hazardous	
Disulfates	С	.1-2	Hazardous	
Others	B and C	traces	Hazardous	

 ^{a}B = Product of biodegradation ^{b}C = A contaminant in the MSW

Adapted from: McBean, E. A., F. A. Rovers, and G. J. Farquhar. *Solid Waste Landfill Engineering and Design*. Englewood Cliffs, New Jersey: Prentice Hall PTR, 1995.

Landfill gases

Methane is lighter than air – accumulates beneath structures, buildings

Carbon dioxide is heavier than air – accumulates in landfill

Landfill gas production

- Theoretical estimate: 520 L / kg of MSW (53% is methane)
- Actual: 160 L / kg (mean), 50 400 L / kg (range)
- Theoretical estimate is based on complete degradation of wastes such as:
 - cellulose 829 L/kg, 50% methane
 - protein 988 L/kg, 52% methane
 - fat 1430 L/kg, 71% methane

Theoretical gas production is $CO_2 + CH_4$

Hydrocarbons in landfill gas

Hydrocarbons in Landfill Gas in mg/m ³ Based on Airless Landfill Gas							
(mg/m ³)						(mg/m ³)	
Ethane Ethene (ethylene) Propane Butane Butane Pentane 2-Methylpentane 3-Methylpentane Hexane Cyclohexane 2-Methylhexane 3-Methylhexane Cyclohexane Heptane 2-Methylheptane 3-Methylheptane 3-Methylheptane Octane Nonane Cumole Bicyclo(3,2,1)- octane-2,3-methyl-4 -methylethylene Decane	$\begin{array}{c} C_{2}H_{6}\\ C_{2}H_{4}\\ C_{3}H_{8}\\ C_{4}H_{10}\\ C_{4}H_{8}\\ C_{5}H_{12}\\ C_{6}H_{14}\\ C_{6}H_{14}\\ C_{6}H_{14}\\ C_{6}H_{12}\\ C_{6}H_{16}\\ C_{6}H_{20}\\ C_{6}H_{12}\\ C_{7}H_{16}\\ C_{8}H_{18}\\ C_{8}H_{18}\\ C_{8}H_{18}\\ C_{9}H_{20}\\ C_{9}H_{12}\\ C_{10}H_{16}\\ \end{array}$	0.8-48 0.7-31 0.04-10 0.3-23 1-21 0-12 0.02-1.5 3-18 0.03-11 0.04-16 0.04-13 2-6 3-8 0.05-2.5 0.05-2.5 0.05-2.5 0.05-75 0.05-400 0-32 15-350 0.2-137		Undecane Dodecene Tridecane Benzene Ethylenbenzene 1,3,5-Methylbenzol Toluene m/p-xylol o-Xylol Trichlorofluoromethane Dichlorofluoromethane Chlorotrifluoromethane Trichloroemethane (chloroform) Tetrachloromethane (carbon tetra-chloride) 1,1,1-Trichloroethane Chloroethane Dichloroethane	$\begin{array}{c} C_{11}H_{24} \\ C_{12}H_{24} \\ C_{13}H_{28} \\ C_6H_6 \\ C_8H_{10} \\ C_7H_8 \\ C_7H_8 \\ C_7H_8 \\ C_8H_{10} \\ C_6H_{10} \\ CCl_3F \\ CHCl_2F \\ CClF_3 \\ CH_2Cl_2 \\ CHCl_3 \\ CCl_4 \\ C_2H_3Cl_3 \\ C_2H_5Cl \\ C_2H_4Cl_2 \\ C_3HCl_3 \\ \end{array}$	7-48 2-4 0.2-1 0.03-7 0.5-238 10-25 0.2-615 0-378 0.2-7 1-84 4-119 0-10 0-6 0-2 0-0.8 0.5-4 0-284 0-294 0-182	
Bicyclo(3,1,0)hexane- 2,2-methyl-5- methylethylene	C ₁₀ H ₁₃	12-153		Tetrachloroethene Chlorobenzene	$C_2H_2Cl_4$ C_6H_5Cl	0.1-142 0-0.2	

Adapted from: McBean, E. A., F. A. Rovers, and G. J. Farquhar. *Solid Waste Landfill Engineering and Design*. Englewood Cliffs, New Jersey: Prentice Hall PTR, 1995.

		(mg/m ³)		(mg/m ³)
Ethane	C ₂ H ₆	0.8-48	Undecane	C ₁₁ H ₂₄	7-48
Ethene (ethylene)	C_2H_0 C_2H_4	0.7-31	Dodecene	C ₁₂ H ₂₄	2-4
Propane	C ₃ H ₈	0.04-10	Tridecane	C ₁₃ H ₂₈	0.2-1
Butane	$C_{4}H_{10}$	0.3-23	Benzene	C ₆ H ₆	0.03-7
Butene	C_4H_8	1-21	Ethylenbenzene	C ₈ H ₁₀	0.5-238
Pentane	C ₅ H ₁₂	0-12	1,3,5-Methylbenzol	C ₇ H ₈	10-25
2-Methylpentane	C ₆ H ₁₄	0.02-1.5	Toluene	C_7H_8	0.2-615
3-Methylpentane	C ₆ H ₁₄	0.02-1.5	m/p-xylol	C ₈ H ₁₀	0-378
Hexane	C ₆ H ₁₄	3-18	o-Xylol	C ₆ H ₁₀	0.2-7
Cyclohexane	C ₆ H ₁₂	0.03-11	Trichlorofluoromethane	CCl ₃ F	1-84
2-Methylhexane	C ₆ H ₁₆	0.04-16	Dichlorofluoromethane	CHCl ₂ F	4-119
3-Methylhexane	$C_{6}H_{20}$	0.04-13	Chlorotrifluoromethane	CCIF ₃	0-10

		(mg/m ³)			(mg/m ³)
Cyclohexane	$C_{6}H_{12}$	2-6	Dichloromethane	$\mathrm{CH}_2\mathrm{Cl}_2$	0-6
Heptane	C_7H_{16}	3-8	Trichloroemethane		
2-Methylheptane	C_8H_{18}	0.05-2.5	(chloroform)	CHCl ₃	0-2
3-Methylheptane	C ₈ H ₁₈	0.05-2.5	Tetrachloromethane		
Octane	C ₈ H ₁₈	0.05-75	(carbon tetra-chloride)	CCl ₄	0-0.8
Nonane	C ₉ H ₂₀	0.05-400	1,1,1-Trichloroethane	C ₂ H ₃ Cl ₃	0.5-4
Cumole	C ₉ H ₁₂	0-32	Chloroethane	C ₂ H ₅ Cl	0-284
Bicyclo(3,2,1)-	C ₁₀ H ₁₆	15-350	Dichloroethene	$C_2H_4Cl_2$	0-294
octane-2,3-methyl-4					
-methylethylene			Trichloroethene	C ₂ HCl ₃	0-182
Decane	C ₁₀ H ₃₂	0.2-137	Tetrachloroethene	$C_2H_2Cl_4$	0.1-142
Bicyclo(3,1,0)	C ₁₀ H ₁₃	12-153	Chlorobenzene	C ₆ H ₅ Cl	0-0.2
hexane-2,2-methyl-5					
-methylethylene					

Adapted from: McBean, E. A., F. A. Rovers, and G. J. Farquhar. *Solid Waste Landfill Engineering and Design*. Englewood Cliffs, New Jersey: Prentice Hall PTR, 1995.

Gas generation rates

Waste degradation is generally modeled as a first-order process:

$$V = V_0 e^{-kt}$$

where

V = gas production rate (function of time)

 V_0 = initial gas production rate

t = time

k = first-order degradation rate = 0.69 / $t_{1/2}$

 $t_{1/2}$ = half-life

Half-lives of degradation:

Food, garden wastes $-\frac{1}{2}$ to $1\frac{1}{2}$ years

Paper, wood – 5 to 25 years

Landfills typically generate gas for 5 to 20 years

Landfill gas collection

Large landfills are required by EPA Clean Air regulations to implement a gas collection and control plan – concern is non-methane organic compounds (NMOC)

Gas collection may be passive or active

Passive gas venting

- Vent layer atop waste typically 12 to 30 cm thick (5 to 12 inches)
- Perforated pipe (usually only short section at landfill high points) leading to "candy-cane" vent pipe or flares
- Design is by trial and error since it is site-specific Rule of thumb is 1 vent for 7500 m³ of waste

Active gas collection at Crapo Hill Landfill

Image courtesy of Peter Shanahan.

Active gas collection

- Utilized when gas emissions create problems, gas is desired for commercial use, passive venting is inadequate
- Entails connecting a vacuum pump or blower to discharge end of piping system
- Gas extraction wells may be installed during operating period or as an "after design"
- Rules of thumb: space wells at three times the waste depth
- Radii of influence of gas extraction wells in MSW landfills are 100 to 500 feet

Design considerations for gas collection

Flexible connection (bellows) required at perforations of cap liner

Condensate can collect in gas collection pipes – require water traps to remove accumulated condensate

Flare for gas disposal at Crapo Hill Landfill

- Flares work when methane is greater than 20% by volume
- Generally enclosed in stack to effect longer residence times and greater combustion
- Contains flame sensor which turns off valve when flame goes out

