Atmos. Chem. Lecture 16, 11/6/13: Acid formation in droplets

Acid rain Review of S(IV) equilibria Oxidation of S(IV) to S(VI) Aqueous oxidation of other stuff

Proposals due Friday; PSet 4 due Mon Nov 25

4

Comparison of reaction rates

Images removed due to copyright restrictions. See Tables 7.19 and Figure 7.19 in Seinfeld, J. H., and S. H. Pandis. *Atmospheric Chemistry and Physics*, 2nd ed. Wiley 2006.

S&P

TABLE 8.9 Summary of Photochemical dissociation	Quantum yield*	Reference
$O_3 + h\nu(\lambda \le 336 \text{ nm}) \xrightarrow{\text{H}_3\text{O}} \text{H}_2\text{O}_2$	$\Phi = 0.48$ at 254 nm 0.23 at 310 nm	Gurol and Akata, 1996 Taube, 1957
$\mathrm{H_2O_2} + h\nu(\lambda \leq 380 \ \mathrm{nm}) \rightarrow 2\mathrm{OH}$	$\Phi^{OH}(308 \text{ nm}) = 0.98$ $\Phi^{OH}(351 \text{ nm}) = 0.96$ $\Phi^{OH}(250 \text{ nm}) = 1.8$	Zellner et al., 1990; Zellner and Herrmann, 199
$HONO + h\nu(\lambda \le 390 \text{ nm}) \rightarrow OH + NO$	Φ ^{OH} (280-390 nm) - 0.35	Fischer and Warneck, 1996
$HNO_3 + hv(\lambda \le 320 \text{ nm}) \rightarrow OH + NO_2$	$\Phi = 0.1^{6}$	Graedel and Weschler, 1981
$\operatorname{NO}_2^- + h_F(\lambda \le 410 \text{ nm}) \xrightarrow{\operatorname{H}_2\operatorname{O}} \operatorname{NO} + \operatorname{OH} + \operatorname{OH}^-$	$\Phi^{OH}(308 \text{ nm}) = 0.07$ $\Phi^{OH}(351 \text{ nm}) = 0.046$ $\Phi^{OH}(280 \text{ nm}) = 0.069$ $\Phi^{OH}(390 \text{ nm}) = 0.022$	Zellner et al., 1990 Zellner et al., 1990 Fischer and Warneck, 1996 Fischer and Warneck, 1996
$\begin{array}{l} \mathrm{NO}_{2}^{-} + h\nu(\lambda \leq 350 \ \mathrm{nm}) \rightarrow \mathrm{NO}_{2}^{-} + \mathrm{O} \\ \rightarrow \mathrm{NO}_{2} + \mathrm{O}^{-} & \frac{\mathrm{H_{2}O}}{\mathrm{H_{2}O}} & \mathrm{OH^{-}} + \mathrm{OH} \\ \mathrm{HO}_{2}^{-} + h\nu(\lambda \leq 390 \ \mathrm{nm}) & \xrightarrow{\mathrm{H_{2}O}} & \mathrm{OH^{-}} + \mathrm{OH} \end{array}$	$\begin{array}{l} \Phi^{\rm O}(305~{\rm nm})=1.1\times10^{-3}\\ \Phi(305313~{\rm nm})=0.013 \end{array}$	Warneck and Wurzinger, 1988; Zepp et d., 1987 Zellner et al., 1990; Zellner and Herrmann, 1997
$HO_{1}^{-} + h\nu(\lambda \le 390 \text{ nm}) \xrightarrow{H_{2}O} OH + OH^{-} + O_{2}$		Treinin, 1970
^a These are effective quantum yields, that is, those ^b Estimated. © source unknown. All rights Commons license. For more i	reserved. This content is e	xcluded from our Creative

Aqueous oxidation of other species: NO_x

 $H_{HNO3} = 2.1 \times 10^5 \text{ M/atm}$ $H_{NO} = 1.9 \times 10^{-3} \text{ M/atm}$ $H_{NO2} = 1.0 \times 10^{-2} \text{ M/atm}$

But: nitrite, nitrate has important aqueous chemistry

[Note: Additional material is discussed here during lecture.]

Aqueous oxidation of other species: Organics

 $CH_2O(g) \leftrightarrows CH_2O(aq)$ $CH_2O(aq) + H_2O \leftrightarrows CH_2(OH)_2$

 $CH_2(OH)_2 + OH + O_2 \rightarrow HCOOH$ HCOOH ≒ H⁺ + HCOO⁻ (aq) forms acid!

[Note: Additional material is discussed here during lecture.]

1.84J / 10.817J / 12.807J Atmospheric Chemistry Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.