Atmos. Chem. Lecture 17, 11/13/13: Particulate matter: Size and behavior

Intro to particulate matter Size distributions Particle motion: Diffusion, settling

PSet 4 due Monday Nov. 25

Monday's reading: add in 461-464

What is a "diameter"?

Not all particles are spherical! Physical diameter becomes meaningless... Measurement techniques often get size information from mobility, terminal velocity, etc.

→ Need to use equivalent diameters

Volume equivalent diameter D_{ve}: diameter of sphere of same volume as the particle of interest

Aerodynamic diameter D_a: diameter of a sphere of unit density (1 g/cm³) that has the same terminal velocity of the particle of interest

Vacuum aerodynamic diameter D_{va} : diameter of a sphere of unit density (1 g/cm³) that in the free molecular regime has the same terminal velocity of the particle of interest

Electrical mobility diameter D_m: diameter of a charged sphere that has the same migration velocity in a fixed electric field as the charged particle of interest

see DeCarlo et al., Aerosol Sci. Technol., 38:1185 (2004)

1.84J / 10.817J / 12.807J Atmospheric Chemistry Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.