1.84/10.817/12.807: Atmospheric Chemistry

Prof. Jesse Kroll

Today:

- 1) Motivation/Introduction
- 2) Course overview/outline
- 3) Atmosphere, chemistry basics

		mosphere
Chemical Species	Volume fraction, ppm	
		Notes on units:
Nitrogen (N ₂)	780,840 (78.084%)	
Oxygen (O ₂)	209,460 (20.946%)	1) ppm, ppb, ppt refer to volume (ppm
Argon (Ar)	9,340 (0.9340%)	ppbv, etc.)
Carbon dioxide (CO ₂)	390 (0.039%)	2) For an ideal gas, PV=nRT , so volume
Neon (Ne)	18.18 (0.001818%)	fraction and mole fraction are the sam
Helium (He)	5.24 (0.000524%)	3
Methane (CH_4)	1.79 (0.000179%)	3) These are mixing ratios, relating
Krypton (Kr)	1.14 (0.000114%)	amount of the compound to the total
Hydrogen (H ₂)	0.55 (0.000055%)	amount of air.
Nitrous oxide (N ₂ O)	0.3 (0.00003%)	4) This is different from concentration,
Carbon monoxide (CO)	0.1 (0.00001%)	which is moles (or molecules) of
Xenon (Xe)	0.09 (0.00009%)	compound per absolute volume (usual
Ozone (O ₃)	0.0 to 0.07 (0 to 0.000007%)	molecules/cm ³).
Nitrogen dioxide (NO ₂)	0.02 (0.000002%)	
		5) Can convert between the two, but
Not included in above dry	y atmosphere:	the conversion depends on P, T (altitude)!
Water vapor (H ₂ O)	~0.40% over full atmosphere,	(antitude):
	typically 1%-4% at surface	

Temperature	Absolute pressure	Relative humidity		
°C	kPa	% RH	Publishing or establishing entity	
0	100.000		IUPAC (present definition) ^[1]	
0	101.325		IUPAC (former definition) ^[1] , NIST ^[6] , ISO 10780 ^[7]	
15	101.325	O ^{[8][9]}	ICAO's ISA, ^[8] ISO 13443, ^[9] EEA, ^[10] EGIA ^[11]	
20	101.325		EPA, ^[12] NIST ^[13]	
25	101.325		EPA ^[14]	
25	100.000		SATP ^[15]	
20	100.000	0	CAGI ^[16]	
15	100.000		SPE ^[17]	
20	101.3	50	ISO 5011 ^[18]	
۴F	psi	% RH		
60	14.696		SPE, [17] U.S. OSHA, [19] SCAQMD[20]	
60	14.73		EGIA, ^[11] OPEC, ^[21] U.S. EIA ^[22]	
59	14.503	78	U.S. Army Standard Metro ^{[23][24]}	
59	14.696	60	ISO 2314, ISO 3977-2 ^[25]	
°F	in Hg	% RH		
70	29.92	0	AMCA, ^{[26][27]} air density = 0.075 lbm/ft ³ . This AMCA standard applies only to air.	

	dation: Thermod $H_4 + 2O_2 \rightarrow CO_2 +$	
molecule	∆H _f ⁰ (kJ/mol)	Sº (J/mol/K)
CH₄	-74.8	186.2
H₂O	-241.8	188.7
CO ₂	-393.5	213.6
0 ₂	0.0	205.0

$$5/2 O_2 + N_2 + H_2O \rightarrow 2 HNO_3$$

"We see from the large negative free energy of
formation of nitric acid that it should be
producible directly from its elements. Even
starting with water and air, we see by our
equation that nitric acid should form until it
reaches a concentration of about 0.1 M where
the calculated equilibrium exists. It is to be
hoped that nature will not discover a catalyst
for this reaction, which would permit all the
oxygen and part of the nitrogen of the air to
turn the oceans into dilute nitric acid."

			What's next		
2	4	W	Introduction; atmospheric composition	1-38	
	9	M	Chemical kinetics 1: Reaction rates	75-93	
C	11	W	Chemical kinetics 2: Reaction mechanisms	"	
September	16	M	Photochemistry and spectroscopy 1	98-135	
	18	W	Photochemistry and spectroscopy 2	"	
	23	M	Temperature, pressure, radiance	720-734	PSet 1

1.84J / 10.817J / 12.807J Atmospheric Chemistry Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.