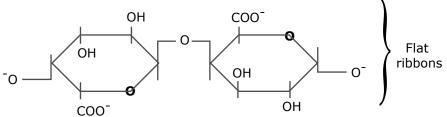
1.89, Environmental Microbiology Prof. Martin Polz Lecture 11

Peripheral Metabolism

- Difference between aerobes & anaerobes
- Difference in flexibility of C-substrate use.
 Example: Pseudomonas Putida: > 200 different C-substrates Bacillus Fastidiosus: 1 C-substrate (uric acid)
- Over 20 million known C-substrates (primarily products of plants & bacteria)
- Dominance of polymers (because what organisms are composed of)

1. Polymers

Problem > large & insoluble


involved in \rightarrow motility & attachment (gain access to polymers by...)

 \rightarrow extracellular degradation via excretion of hydrolytic enzyme

 \rightarrow monomers: uptake

a) Polysaccharides: structure & storage example: cellulose

- Enzymes
 - Endoglucanases
 - Exoglucanases / cellulases
- Other enzymes
 - o Chitinases
 - o Pectinases
 - o Xylanases
- b) Lignin

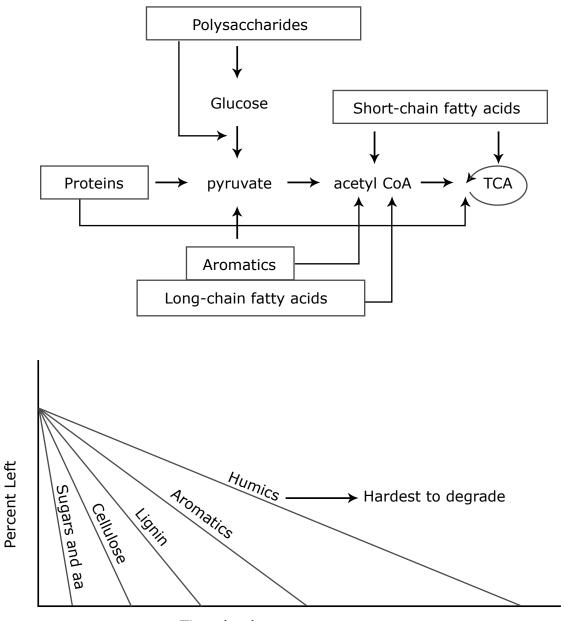
Secondary component of wood

- Many aromatic rings
- Large & irregular structure

- Role is protection from biodegradation phenolic rings are toxic, & structural irregularity makes it hard to degrade
- Oxygenases catalyze initial biodegradation (ring oxidation) of phenolic rings
- c) Humics
 - Conglomerate of organic compounds
 - Product of chemical & biological degradation core: aromatic rings
 - Condense with reactive residues (carboxylic acid groups or amino groups) to form very large & insoluble molecules
 - Soils & sediments
 - Turnover in temperate soils ~ thousands of years
- d) Other polymers
 - Proteins \rightarrow proteinases (degrade proteins)
 - DNA, RNA \rightarrow nucleases (degrade nucleotides)

2. Monomers

- a) Amino acids deamination \rightarrow enter TCA cycle, glycolysis example: aspartate \rightarrow oxaloacetate alanine \rightarrow pyruvate
- b) Organic acids
 - 2, 3 C \rightarrow glyoxylate cycle
 - $4-6 \text{ C} \rightarrow \text{TCA}$
 - >6 C $\rightarrow \beta$ oxidation
- c) Hydrocarbons
 - C & H only \rightarrow most reduced form
 - Poorly soluble
 - All organisms make some, but they are mostly a product of diagenesis (oil)


Aliphatics = straight or branched chains

<u>Oxygenases degrade them</u> most effectively: enzymes that directly incorporate O into the carbon chain \Rightarrow primarily <u>aerobic hydrocarbon</u> <u>degradation</u>

Aromatics = rings \rightarrow Also degraded by <u>oxygenases</u> Oxygenases: Monoxygenases: incorporate O Dioxygenases: incorporate O₂

1.89, Environmental Microbiology Prof. Martin Polz Anaerobic: activation with CoA via ATP expenditure

- \rightarrow Common intermediate = benzoyl CoA
- \rightarrow Much less efficient than aerobic degradation
- ightarrow Can degrade small hydrocarbons

Time (yrs)