1.89, Environmental Microbiology Prof. Martin Polz Lecture 8

Biosynthesis & Fueling

1. Energy: all energy generation in biological systems is based on <u>Redox</u> reactions.

Example:
$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$$
 can separate into $\frac{1}{2}$ reactions
+ $H_2 \rightarrow 2e^- + 2H^+$
 $\frac{1}{2}O_2 + 2e^- \rightarrow O_2^{2-}$

Electron tower = conceptualization for quick assessment about whether energy generation from specific combinations is possible.

$$\rightarrow \frac{1}{2}$$
 reactions according to reduction potential E₀ (per e⁻)

 $AG = -n E_{\circ} F = -nEF$ Faraday constant
Reduction potential
Number of e⁻ transferred in full reaction

```
(oxidized on left, reduced on right)
```


want reduced form $\sqrt{5}$

Electron carriers: (NADH) (fueling reactions) & (NADPH) (biosynthesis reactions)

One goal of metabolism is to regenerate these compounds

- NAD⁺/NADH → often is half reaction in the oxidation of C-substrates inside the cell
 NADP⁺/NADPI → reductant in bicounthecia
- NADP⁺/NADPH \rightarrow reductant in biosynthesis

Energy generation/use & carbon flow within cells:

• In bacteria, you need to conceptually separate energy & carbon flow

Carbon:

- Heterotrophy: biomass generated from organic carbon.
- Autotrophy: biomass generated from <u>CO₂</u>.

Energy:

- Chemotrophy: energy derived from oxidation of (organic or inorganic) <u>chemicals</u>.
- Phototrophy: energy derived from light.

A. Chemoheterotrophy

exception - fermentation

Energy currency – ATP

2 mechanisms of ATP generation

- 1. e⁻ transport chain phosphorylation: electrochemical gradient across membrane is equilibrated through ATPases \rightarrow synthesize ATP (reversible!)
- 2. substrate level phosphorylation in cell membrane has 3 phosphorylated intermediates \rightarrow can transfer $\sim \textcircled{D}$ to ADP

B. Photoautotrophy

- NADPH comes from a reaction in which light energy is used to drive the e⁻ transport chain
- NADH \rightarrow involved in respiration & fermentation
- NADPH \rightarrow involved in biosynthesis reactions

Autotrophs just start a little earlier with CO_2 . Autotrophs fix CO_2 into organic C (example glucose), which is then converted to 12 precursors (or also respired during darkness) via central metabolism. Autotrophs have central metabolism, like heterotrophs.

Central Metabolism

4 sets of reactions: Glycolysis (EMP pathway)

 $\begin{array}{ccc}
C6 & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$