1.89, Environmental Microbiology Prof. Martin Polz Lecture 6

Figure 9.14: Gram \oplus can detect density of surroundings: sense other bacteria \rightarrow send out/catch DNA via transformation

- Transformation (cont.)
 - o $G \Theta$: either always competent or can be induced by physiological state or environmental conditions.
- Transduction
 - Consequence of errors in development of phages
 - o Generalized transduction
 - Specialized transduction (lysogenic/temperate phage)
- Conjugation
 - o Transfer of plasmids
 - <u>F plasmids</u> (fertility)

 \rightarrow tra genes \rightarrow transfer: sex pilus

- o Hfr (High Frequency of Recombination) plasmids
- Plasmids can insert into chromosome \rightarrow can transfer large pieces of host chromosome between cells while being transferred itself.

Fate of Transferred DNA

- Degradation by nucleases (example: restriction nucleases)
- Stabilization by circularization
- Homologous recombination (into chromosome)
 - Rec A (homologous recombination)

 \rightarrow Results in patched or spliced DNA

- <u>Point Mutation</u> Rate: 1.5 × 10⁻¹⁰ mistakes/bp/generation (mistakes that escape repair mechanism)
- Gene transfer between phages: 1 in 10⁸ infections will lead to gene transfer Note: there are 20 million billion gene transfers per second in the ocean 10⁶ cells/mL sea water

Taxonomy: reliable classification with the goal of identification.

Phylogeny: uses evolutionary relationships to classify.
↓
DNA sequences serve as evolutionary chronometers: can show relationship

• Genes: must be universally distributed, functionally conserved.

To be used as phylogenetic classifiers, genes must fit these conditions

Phylogeny: 'genes' must be universally distributed functionally conserved, & have an appropriate rate of change (point mutations)

Example: universal genes:		0	16 S rRNA genes
Traced back to one ancestor	Can't have length variation	000	RNA polymerases RecA ATPases

• 16 S rRNA – prominent role in phylogeny

Genes have three regions:

- a) universally conserved
- b) length is conserved
- c) neither length nor sequence are conserved

Alignment: Regions number 1 & 2

Evolutionary distance = % difference nucleotides

Example:

