
 

Solutions – Problem set 2 

1. MD scales as N2 if methods such as neighbor lists or bins are not used.  The reason are 
two nested loops during force calculation, to find all neighbors j of each atom i. Such 
scaling is a computational disaster for large systems.  

Pseudocode: 

For i from 1 to N: 
For j from 1 to N, i not equal j 

<Evaluate force and energy contributions for i-j interactions> 

Better scaling: Use of neighbor list, so that one of the loops can be avoided as long as 
neighbor lists are not updated. 

For Coulomb interactions the interactions are long-range, so that neighbor lists can not be 
efficiently be implemented.  The Coulomb interactions decay as 1/r2, whereas LJ 
interactions decay as 1/r6, thus much faster.   

2. There is no difference in the energies for the two configurations shown.  This 
illustrates the challenge of modeling molecules, where simple pair potential can not be 
used. Three-body bending terms could be a simple strategy to distinguish bent and 
straight configurations.  

3a. Atoms are vibrating around a permanent position after a short equilibration phase.   

3b. Changes of density lead to formation of nanovoids by clustering together.  The 
empty space in between them becomes larger for decreasing density.   

3c. Procedure: For example, you may plot the Average square displacement over time.  
For a solid, this curve approaches a constant value.  For a liquid, one observes a 
continuous linear increase. This provides a clear distinction between a liquid and solid 
state. 

The melting temperature is estimated to be T ≈ 0.26. 

Alternatively: “Observe” the trajectories of atoms; for solid state atoms remain close to 
their initial positions and only “draw” little smeared out points.  For the liquid state, the 
entire area is quickly covered by lines. 

4. 	Young’s modulus is given by 
2E = k ,
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where k = φ '' is the second derivative of the LJ potential with respect to r, evaluated at 
r=r0, which can easily be written as a function of the parameters σ and ε. 

The shear modulus is given by 

3 µ = k . 
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The elasticity coefficients cijkl  are given by 

∂ 2Φ(ε ij ) ∂ 2Φ(ε ij ) 3 3 k ,
c1111 = = c2222 = =

∂ε11∂ε11 ∂ε 22∂ε 22 4


∂ 2Φ(ε ij ) 3
c1122 = =
 k ,
∂ε11∂ε 22 4 

and 
∂ 2Φ(ε ij ) 3
c1212 = =
 k . 
∂ε12∂ε12 4 

We note that c1212 = c1122 , which is called the Cauchy relation.  This condition is a 
consequence of the pair potential assumed to describe the energies of the atomic bonds, 
and it is not satisfied in most real solids.   

We note that in the expression for  

σ 12 = 
∂Φ

∂ε 
(ε 
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ij ) = k 
4
3 (ε12 + ε 21 ) 

we include the fact that always ε12 = ε 21 , so that the shear modulus relating shear strain 
to shear stress is two times c1212 . The coefficient c1212  appears twice when we calculate 
σ12 , for example, since σ 12 = c12klε kl and ε kl = ε lk . 

Poisson’s ratio is defined as the ratio between lateral and tensile strain (uniaxial tension 
in the x-direction), 

εν = − 22 .

ε11


Poisson’s ratio is ν = 1/ 3 . 



The material is isotropic for small deformation, since Young’s modulus for pulling in the 
x- and y-direction are identical.   


