CMS. 594/894 - EDUCATIONTECHNOLOGY STUDIO Μ SPRING 2019 INTRODUCTION TO LEARNING ANALYTICS AND EDUCATIONAL DATA MINING

CLASS OUTLINE

- Part 1
 - Group brainstorm activity
 - Short lecture on learning analytics (LA) research
 - Mini-project #1 partner/group formation
- Part 2
 - MOOC and dataset review of the dataset
 - Learning analytics mini-project brainstorm activity
 - Share out to the class
 - Planning for next class

BRAINSTORM ACTIVITY

<u>DUE TODAY!</u>

- You had four readings to complete today:
 - <u>Siemens & Long (2011)</u>: General paper about the field of LA
 - <u>Ferguson (2012)</u>: General paper about the field of LA
 - <u>Chatti et al. (2012)</u>: Provides a reference model for LA based on four dimensions: what, who, why and how
 - <u>Veeramachaneni et al. (2014)</u>: a technical paper that explains the feature engineering process in MOOCs
- <u>Activity:</u> Form five groups...

<u>ACTIVITY</u>: BRAINSTORMING AROUND THESE QUESTIONS

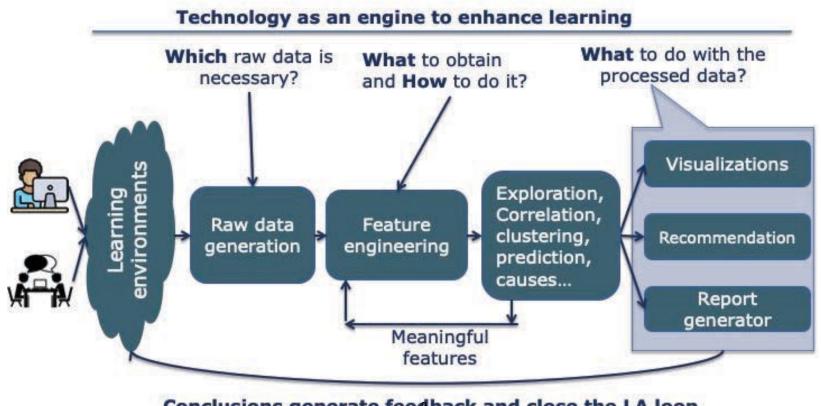
No looking at the papers! Use your critical thinking skills to answer the following questions:

- Define your own view of learning analytics, point out your keywords
- LA has grown a lot in the last decade. What have been the enablers and drivers?
- What are the steps in the LA process? List examples of each step.
- What value can LA bring to education?
- What are the main challenges of LA?

LEARNING ANALYTICS OVERVIEW

RELATED FIELDS OR CONCEPTS

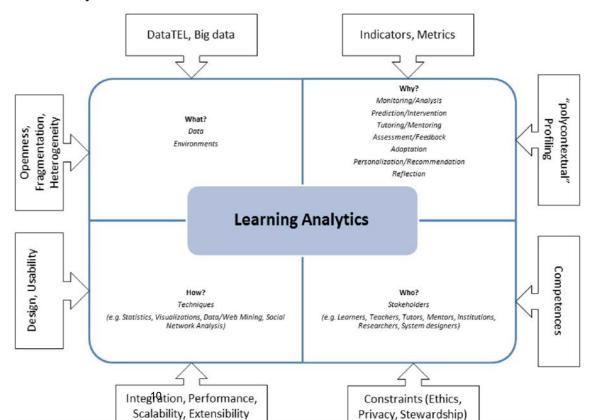
- Academic Analytics: More focused on the institutional side, e.g. use of resources or admission process
- Action Research: Focused on teaching practices and quality, e.g. qualitative methods, teachers and students
- Educational Data Mining: Developing methods, different types of ed data e.g. new Item Response Theory (IRT) algorithm or method adapted feedback
- **Recommender Systems:** Based on previous data, what items can we recommend? Content-based or Collaborative Filtering (CF)
- Personalized Adaptive Learning: Adaptivity (course materials adapt automatically) vs. Adaptability (learners personalize those materials)⁷
 Source: Chatti et al. (2012)


THE BROAD VIEW OF LEARNING ANALYTICS

...collection, analysis and reporting of **data** about <u>learners</u> and their <u>contexts</u>, for purposes of <u>understanding</u> and <u>optimising</u> **learning** and the **environments** in which it occurs...

> Source: First Learning Analytics and Knowledge Conference

LA builds on the aforementioned areas to become a generic and all-encompassing term


THE LEARNING ANALYTICS PROCESS

Conclusions generate feedback and close the LA loop

REFERENCE MODEL OF LA (CHATTI ET AL., 2012, P.7)

We apply this reference model in the following 4 slides

© <u>Chatti et al</u>. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

DATA AND ENVIRONMENTS (WHAT?)

What kinds of data and environments are used in the analysis?

- Learning Management Systems (Stellar, Sakai, Moodle, WebCT)
- Personal Learning Environments
- Intelligent Tutoring Systems
- Massive Open Online Courses (edX, Coursera, FutureLearn...)
- Games for Learning
- Simulation environments
- In-classroom settings using multimodal data e.g. face to face collaboration using wearables, camera and voice
- ... and many more happening in informal settings! StackOverFlow, Pinterest, YouTube

Source: Chatti et al. (2012)

STAKEHOLDERS (WHO?)

Who is involved?

- Students (personal data, help in learning, evaluation)
- Teachers (improve teaching, not feeling controlled, new literacy and competencies)
- Educational institutions and administrators (support decision making, students at risk)
- Private educational companies (selling their solutions)
- Governmental institutions (funding, education policy)
- Education technologists (implementation of solutions)
- Learning Analytics researchers (transfer research to practice challenge)

Source: Chatti et al. (2012)

OBJECTIVES (WHY?)

Multiple objectives depending on the point of view of stakeholders (useful ideas or in-depth references):

- Monitoring and analysis: <u>ANALYSE visualization dashboard</u>
- Prediction and intervention: <u>Self-regulation intervention</u>
- Assessment and feedback: <u>Immediate and adapted feedback</u>
- Adaptation: <u>Exercise difficulty</u> or <u>gaming the system</u>
- Personalization and recommendation: <u>Courses</u> or <u>threads</u>
- In-class support: <u>Multimodal approaches in the classroom</u> and <u>real-world examples in China</u>

METHODS (HOW?)

What techniques are being applied to meet the objectives? (useful ideas or in-depth references):

- Exploratory statistics: Simple descriptive metrics, e.g. mean, mode, median, variance, charts
- Information visualization: <u>Dashboards</u>
- Data mining techniques:
 - Classification: <u>Dropout prediction in MOOCs</u>
 - Regression: <u>Predicting learning gains</u>
 - Clustering: <u>Profiles of engagement in gamified environments</u>
 - Heuristics algorithms: <u>Cheating@Scale in MOOCs</u>
- Social network analysis: Modeling based on graphs, e.g. interactions and participants' roles in MOOCs

Source: Chatti et al. (2012)

GROUP FORMATION

BREAK - PLEASE RETURN IN 10 MINUTES

MOOCS AND DATASET REVIEW

MASSIVE OPEN ONLINE COURSES (MOOCS)

- The term MOOC was coined in 2008 after CCK08 (cMOOC)
- In 2012 Coursera, edX and Udacity emerged (xMOOC)
 Exciting for practitioners and for human development
- Plenty of data to study the worldwide classroom
 ...but research did not accomplish a huge impact
- A number of regional initiatives emerged (e.g. Edraak, MiriadaX, XuentangX, FUN...)
 - \circ Many of these use Open edX software
- In 2013 Udacity announced first MOOC-based MSc
 Seeking financial sustainability
 - Numerous Small Private Önline Courses (SPOCs)

HARVARDX-MITX DATASET ITEMS

- The dataset has three items
 - Creating the dataset and anonymization process:
 - <u>EdX</u> and <u>ToS</u>, <u>raw data</u>, <u>edx2bigquery processing</u>, anonymization (careful with quasi-identifiers, <u>e.g.</u> <u>Netflix challenge</u>)
 - A codebook (i.e. description the contents, structure, and layout of a dataset)
 - A comma-delimited file with the person-course data where each row represents the registration of an account to a course
- Why is this dataset important?

ACTIVITY: Play time!

MINI-PROJECT #1 BRAINSTORM

- Do you have a clear idea of what to do for your mini-project #1? If so, go for it! If not:
 - Summary of variables, draw some charts, do some readings, ask instructors...
- Design journal activity (see slide 4)
 - o Idea/problem
 - Design process
 - Technical implementation
- Each group will share their slide with the class. You can work on one slide but copy to all journals
- I will share some ideas after the group shares out

MORE IDEAS - OF VARYING TECHNICAL COMPLEXITY

- 1. Low complexity: Reports with summary statistics/charts
 - Mixed methods analysis on the influence of course in demographics and participation funnel
 - MOOC summary report for high level stakeholders i.e. donors or institutional leaders e.g. see <u>these reports</u>
- 2. Medium complexity: Viz dashboards or data mining
 - Viz dashboards: <u>Tableau Public</u> or <u>R Shiny</u> dashboard for Administrators or Instructors? E.g. see <u>this post</u>
 - Classification or regression models? E.g. see <u>this study</u>
 - \circ $\,$ Clustering of different profiles of students or courses $\,$
- 3. High complexity: Advanced analysis or combination
 - \circ $\,$ Combining visualization dashboards with data mining $\,$
 - Anomaly detection to find outliers, e.g. maybe to detect academic dishonesty or data processing issues
 - Network analysis of courses/students

PREPARING FOR THE NEXT CLASS

DUE NEXT WEEK: FIRST MINI-PROJECT #1 ANALYSIS

- Homework
 - Additional reading on LA visualizations
 - Gain deeper knowledge of your selected method
 - Design journal assignment: Your first LA analysis or visualization
 - Need help? Let me know!
- Next week's class
 - Share out your homework, receive peer/instructor feedback and make improvements
 - In-class work on mini-projects with instructors' help to align objectives and solve tech issues
 - The work during this session will be key to yourminiproject #1!
 24

BEFORE YOU LEAVE CLASS TODAY...

Please complete an exit ticket

MIT OpenCourseWare https://ocw.mit.edu

CMS.594/CMS.894 Education Technology Studio Spring 2019

For more information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.