
12.009/18.352 Problem Set 2

Due Thursday, 26 February 2015
100 points total

Problem 1: 15 pts — (a,b)=(10,5)
Problem 2: 45 pts — (a,b,c,d,e,f)=(5,5,5,10,10,10)
Problem 3: 40 pts — (a,b,c,d,e,f)=(5,5,5,5,10,10)

1. Kelvin’s age of the Earth. In this problem, we’ll repeat the initial wrongheaded calcu-
lation by Lord Kelvin of Earth’s age. The value here will differ somewhat from the 20
Myr quoted in the course notes, which was a later revision from his initial estimate.

Assume the Earth started out as a homogeneous molten sphere, which uniformly so-
lidified at temperature TM , at a time τ before present. Also assume a known present⊕
near-surface geothermal gradient −∂T/∂z|0, a constant thermal diffusivity D, and con-
stant surface temperature boundary condition T0.

Kelvin’s values for these parameters are TM −T0 = 7000◦F, −∂T/∂z|0 = 1◦F/50ft, and
D = 400ft2/yr.

(a) Justify the assumption that the spherical geometry of Earth, and the fact that
it is not semi-infinite in spatial extent, can be ignored for the purposes of this
problem.

(b) Derive a general expression for τ and put in parameters to arrive at Kelvin’s⊕
estimate of τKelvin.⊕

2. Thermal Diffusion in a Compost Pile. In this problem we will discuss the steady tem-
perature profile of an idealized 1D (height-only) compost pile. A compost pile allows
for rapid decomposition of organic matter because the temperature inside the pile can
be greatly elevated above the temperature of the pile’s surroundings, and decompo-
sition (which supplies heat to the pile) increases as the temperature increases. Thus,
there is a positive feedback loop between the decomposition rate and the temperature
of the pile, which in some cases can be strong enough to heat a pile to the point of
combustion!

(a) Consider a pile confined between z = −H and z = H, with upper and lower
boundaries fixed to a temperature T0 (Figure 2a). We will assume that all heat is
lost due to thermal diffusion, and we will initially consider a pile where there is no
temperature feedback, so decomposition generates heat at a constant volumetric
rate Q 3

0 (units: W m− ) throughout the pile. The compost has thermal diffusivity
D (units: m2 s−1), and volumetric heat capacity Cp (units: J m−3 K−1). Thus,
the steady-state diffusion equation for the temperature of the pile is:

d2T Q
D =

dz2
− 0

. (1)
Cp

Note that this is now an ordinary differential equation (ODE) – since there is no
time-dependence, T is a function of z alone. Solve for the profile of temperature
perturbation from the background, T ′(z) ≡ T (z)− T0 in the compost pile.
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(b) From now on, we’ll drop the prime (on T ′) and consider T to represent the pertur-
bation from the background temperature. Consider the somewhat harder problem
where the decomposition rate scales linearly with temperature:

d2T Q
D =
dz2

− 0
[1 + αT ]. (2)

Cp

Here, we have introduced a new parameter, α, which represents the fractional
change in decomposition rate for a 1-degree change in temperature (note that in
reality, the functional dependence of biological activity on temperature is better
modeled as exponential but this would make the problem a nonlinear ODE –
still analytically solvable, but nastier). The toy problem given by equation (2) is
a linear, second-order, nonhomogeneous ODE with constant coefficients – quite
tractable. We can write T = Th + Tp, where Th is the homogeneous solution, and
satisfies:

d2Th αQ0
D + Th = 0. (3)
dz2 Cp

What is the general form of Th? What is the particular solution Tp?

(c) Using the boundary conditions that T = Th + Tp = 0 on z = (−H,H), solve
for the coefficients in Th and thus

a
√for the overall solution to T (z). Discuss the

relev nce of the length scale L ≡ DCp .
αQ0

(d) Real-world composting. Let’s plug in some values and see where it gets us. Assume
D = 2 × 10−7 m2 s−1, Q0 = 10 W m−3, and Cp = 106 J m−3 K−1, and pick a
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value of α that seems reasonable to you. What is the length scale L? Using
plot the temperature profiles from your solutions to parts 2a and 2c for

a few values of H/L and discuss the importance of the temperature-dependence
of decomposition for your results.

(e) OK, now for a question that should always be asked of simplified mathematical
models of real-world phenomena – does your answer make physical sense? One
way to think about this is in terms of comparing your solution from part 2c to your
solution from part 2a. Do the solutions converge in the limit that the temperature
sensitivity of the decomposition rate becomes very small, α → 0? Why or why
not? Use a combination of graphical, mathematical, and physical reasoning to
explain your results. If you want to take a formal limit, you should evaluate the
limit at constant H (not constant H/L).

(f) Another way to think about whether your answer makes physical sense is in
terms of the approach to equilibrium – starting from a state of zero temperature
perturbation, the pile should heat up with time until it reaches equilibrium. What
constraints (if any) does this pose on the range of H/L for which the solution is
physical? If there is some range of H/L for which your solution is unphysical,
what is going on?

3. Growth of a Cloud Droplet. How rapidly can a cloud droplet grow by condensation from
supersaturated air? This question presents a highly idealized model of the problem,
based again on the steady-state diffusion equation. This time we will work in spherical
coordinates, and we will assume that the water vapor concentration q (units: kg m−3)
depends only on the radius from the center of the drop, r.

(a) Show that at steady state the diffusion equation for q becomes:

1 d dq
Dv

(
r2

r2 dr dr

)
= 0, (4)

where Dv is the molecular diffusivity of water vapor in air.

(b) If we impose the boundary conditions that q = Hq∗ at r =∞ and q = q∗ at r = a,
where a is the radius of the droplet, then what is the solution to equation (4)?
Here, q∗ represents the water vapor mass concentration of a parcel of air that is
saturated, and H is the relative humidity (humidity relative to saturation). H > 1
(greater than 100 %) indicates supersaturation of the air around the droplet and
allows for growth with time, while H < 1 implies subsaturated air and allows for
evaporation of the droplet. Show that the diffusive flux of water vapor into the
sphere (Jv), in mass per unit time, is given by:

Jv = 4πDvaq
∗(H − 1). (5)

(c) Now, we want to consider how the droplet grows in time, due to the diffusive flux
of water vapor into the droplet. Note that if we want to use equation (5), we need
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to justify our assumption that the atmospheric water vapor field is quasi-steady.
In other words, we need to justify our neglect of the time-derivative of the water
vapor concentration in our derivation up to this point. How might we do this?

(d) Assuming that we can use equation (5) to model the growth rate of a cloud
droplet, write down the relevant differential equation for the time rate of change
of a droplet radius a, given condensation rate Jv, and assuming that the droplet
density is that of water, ρw.

(e) Solve the differential equation for droplet growth rate, subject to the initial condi-
tion that a = a0 at t = 0. How does the radius depend on time? Is this surprising?

(f) Using Dv = 2 × 10−5 m2 s−1, q∗ = 5 × 10−3 kg m−3, and H = 1.005 (clouds
are normally only very weakly supersaturated), make a log-log plot of a(t) for
droplets with a0 =1, 10, and 100 µm. How long does it take a cloud droplet to
grow to 1 mm under these conditions? If these conditions are relatively favorable
for droplet growth, and a cloud droplet needs to grow to ∼1 mm before it becomes
a raindrop, what does that tell you about mechanisms for raindrop formation?
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