
12.010 Computational Methods of

Scientific Programming

Lecturers
Thomas A Herring

Chris Hill

09/08/2011 12.010 Lec 01 2

Today’s class:

• Basic content of course and class expectations
• Overview of languages
• Overview of program development

09/08/2011 12.010 Lec 01 3

Class meetings:

• Lectures are 2 hours (break in middle). Latter parts
of class will sometimes be used for in-class tutorials

• Lectures will be held here in 54-322
• Specific textbooks and web resources will be

recommended at time of each section

09/08/2011 12.010 Lec 01 4

Class expectations

• Homework will be set once every couple of weeks
(basically one homework per section in the course)

• You may collaborate on the homework, but your
submissions should be your own work.

• There is no final exam, but there will be a final project
due at the end of semester.

• 5/6 grading on homework, 1/6 grading on final
project.

• Web page for course contains homework dates . The
2010 web site contains examples from previous
years.

09/08/2011 12.010 Lec 01 5

Introduction

• Languages to be covered:
– Fortran, Matlab, Mathematica, C, C++, Python and

graphics and advanced (parallel and GPU
computing) topics

• Specific versions:
– ANSI Fortran77 with Fortran 90 differences
– Matlab Release 2011a
– ANSI C and C++
– Mathematica Version 8.0.1
(ANSI: American National Standards Institute

web.ansi.org)

09/08/2011 12.010 Lec 01 6

Aims of this course

• Cover both program design and syntax of languages
• At the end of the course: Write one language and

read all languages
• Understand the differences between the languages

so that appropriate one is chosen for when needed
later

• We will not cover all aspects of each language but we
will try to give you a working knowledge of the
languages.

09/08/2011 12.010 Lec 01 7

Basic distribution of classes

• 2 introductory lectures discussing general problem
solving

• 5 lectures on Fortran 77 and Fortran 90/95
• 4 lectures on C and C++
• 2 lectures on Mathematica
• 4 lectures on Matlab
• 2 lectures on Python
• 4 lectures on parallel computing and advanced topics

including graphics card computations
• 2 lectures on graphics and numerical methods

09/08/2011 12.010 Lec 01 8

Language concepts Fortran, C, C++

• Compiled languages i.e., source code is created with
an editor as a plain text file.

• Programs then needs to be “compiled” (converted
from source code to machine instructions with
relative addresses and undefined external routines
still needed).

• External routines are those needed to do such
operations as read disk files, write to the screen, read
the keyboard strokes etc.)

• The compiled routines (called object modules) need
then to be linked or loaded.

09/08/2011 12.010 Lec 01 9

Fortran, C, C++ cont.

• Linking creates an executable with relative addresses
resolved and external routine loaded from the system
and user libraries.

• The executable can then, in most cases, be run on
any machine with the same architecture.

• Compiling and linking can be done in one user step.

09/08/2011 12.010 Lec 01 10

Fortran, C, C++ cont.

• Advantages: Programs are fast and can be run on
many machines that don’t need to have Fortran or
C++ loaded.

• (There are exceptions to this depending on linking
options. Safest is “static linking” in which case
system libraries are loaded into program. Dynamic
linking expects to find specific versions of system
routines in specific locations.)

09/08/2011 12.010 Lec 01 11

MatLab

• Interactive language with some automatic compiling
(into MatLab pseudocode) of user subroutines (M-
files).

• User programs can be developed as scripts
• Speed of modern processors makes this type of

approach reasonable.
• Graphics and Graphical user interfaces (GUI) are

built into program (for Fortran, C, and C++ graphics
must be done through external or user written
routines).

09/08/2011 12.010 Lec 01 12

Matlab continued

• Advantages: Since interactive, user can debug on the
fly, results available immediately (i.e., values of
specific variables can be viewed at any time. In
Fortran, C++ code must be changed to output values
or a debugger program used). Integrated
environment which can guide program development
and syntax

• Disadvantages: Code can only be exported to users
with the same version of Matlab but can often be
used on different platforms depending on whether
platform specific options are used). Code can be
often converted to C and compiled (license needed)

09/08/2011 12.010 Lec 01 13

Mathematica

• Interactive symbolic manipulation program with built
in computation and graphics.

• This type of program is often used to derive
algorithms for MatLab, Fortran and C++ but can also
be used to generate results.

• Work can be organized into “work-books” that can
be extended as a project progresses

• Program has options to export code and formulas in
word processing languages

09/08/2011 12.010 Lec 01 14

Mathematica

• Advantages: Symbolic manipulation so that it yields
formulas rather than numerical results. Analysis of
equations gives insights into characteristics of
problems.

• Can represent numerical values with arbitrary
accuracy

• Disadvantages: Codes need version of Mathematica.
Viewing notebooks also requires some parts of
Mathematica be installed.

Python

• Python is an interpreted language that shares many
features with C and Matlab. These types of
languages are often called “scripting” languages

• It has common approach to “quick” solutions to
problems and has a very large community of
developers (open source)

• No variables need be declared and often program
development can be fast in this language.

• Program are created with a text editor.
• The name comes from Monty Python’s Flying Circus.

09/08/2011 12.010 Lec 01 15

09/08/2011 12.010 Lec 01 16

Parallel computing

• One of the methods available to carrying out large
computations. Basic idea is to break problem into
smaller parts that do not depend directly on each
other and can be evaluated simultaneously on
separate computers.

• Linux based PCs make this approach relatively
inexpensive.

• Not quite “off-the-shelf” yet but progressing rapidly
(e.g., later in course we will look at parallel Matlab).

09/08/2011 12.010 Lec 01 17

General approach to any

computational problem:

• Statement of problem: The clearer this can be done, the easier
the development and implementation

• Solution Algorithm: Exactly how will the problem be solved.
• Implementation: Breaking the algorithm into manageable pieces

that can be coded into the language of choice, and putting all
the pieces together to solve the problem.

• Verification: Checking that the implementation solves the
original problem. Often this is the most difficult step because
you don't know what the “correct'' answer is (reason for program
in the first place).

09/08/2011 12.010 Lec 01 18

Example case

• How many numbers need to be stored to save a
symmetric NxN matrix in lower diagonal form? (This
is our statement of problem: Note this may be a small
piece of another larger problem).

• Solution algorithm: In lower diagonal form, the
number of values needed go as: 1x1=1, 2x2=3,
3x3=6 ...

• To increase the dimension of the matrix from (N-
1)x(N-1) to NxN requires N new values. Therefore
our algorithm is the sum of integers from 1 to N.

• So how do we solve it?

09/08/2011 12.010 Lec 01 19

Possible solutions

• Call the number of values we need num_elements.
How do we compute this value?

(a) Simplest
num_elements = 1 + 2 + 3 + 4 + 5 + + N

– Coded specifically for specific values of N. Not
very flexible; could be many options depending on
number of values of N possible.

09/08/2011 12.010 Lec 01 20

(b) Intermediate solution

• Does not require much thought, takes advantage of
looping ability of most languages:
– Fortran77:
num_elements = 0
do i = 1, N
 num_elements = num_elements + i
end do

– Matlab:
num_elements = 0;
for i = 1:N ;
 num_elements = num_elements + i ;
end ;

09/08/2011 12.010 Lec 01 21

(c) Final solution

• (c) Requires some thought about the sequence (also
looking up the sum of series in a book like
Abramowitch and Stegun (eds), Handbook of
Mathematical Functions, Dover, New York,).
num_elements = N*(N+1)/2

• All of the above are examples of algorithms that can

be used. The implementation will depend specifically
on system used.

09/08/2011 12.010 Lec 01 22

Verification of algorithm

• What can fail in the above algorithms. (To know all
the possible failure modes requires knowledge of
how computers work). Some examples of failures
are:

• For (a):What happens if specific value of N needed is
not coded?

Need some exception handling.
• For (b): This algorithm is fairly robust. (See (c) for

some possible problems).
When N is large execution will be slow compared to (c).

09/08/2011 12.010 Lec 01 23

Algorithm (c)

• This is most common algorithm for this type of
problem, and it has many potential failure modes.
For example:

• (c.1) What if N is less than zero?
Still returns an answer but not what would be expected.

(What happens in (b) if N is negative?).

09/08/2011 12.010 Lec 01 24

Algorithm (c) 02

• (c.2) In which order will the multiplication and division
be done.

For all values of N, either N or N+1 will be even and

therefore N*(N+1) will always be even but what if the

division is done first? Algorithm will work half of the

time.

If division is done first and N+1 is odd, the algorithm will

return a result but it will not be correct. This is a bug.

For verification, it means the algorithm works

sometimes but not always.)

09/08/2011 12.010 Lec 01 25

Algorithm (c) 03

• (c.3) What if N is very large?
What is the maximum value N*(N+1) can have? There

are maximum values that integers can be

represented in a computer and we may overflow.

What happens then? Can we code this to handle

large values of N?

• We will return later to algorithm development when
languages are discussed in more detail

09/08/2011 12.010 Lec 01 26

Input/Output (IO)

• Important part of any program since this is where human
interaction occurs.

• Generally programs start with some type of input to be supplied
by human, and end with output of results that humans need to
interpret.

• IO comes in many forms.
– Maybe simple reading of keyboard for user reply or could be

interrupt driven reading from serial or modem port (real-time
data transfer).

– We will cover file and screen IO but not real-time IO
operations (the latter are very platform dependent).

09/08/2011 12.010 Lec 01 27

 Input/Output (IO) 02

• IO operations typically involve human interaction and
therefore the code has to be very robust since the
actions of humans are unpredictable.

• The role of IO is important to consider when
designing an algorithm (Think of programs you have
used where either the input or the output is not
satisfactory.

• IO can be problematic especially when an expected
input never arrives.

09/08/2011 12.010 Lec 01 28

Verification

• Basically: How do you know that the results of your
program are correct?

• The overall program is so large and complex, that
human checking of the the results is usually not
possible.

• Remember there are very rarely answers in the back
of the book.

• There are no definite rules for this

operation.

09/08/2011 12.010 Lec 01 29

Verification 02.

• By breaking the program into small modules, each of
which can be checked, the sum of the parts is likely
to be correct but not always.

• Note: getting a program to compile and run is only
the first (small) step in programming.

• Problems can be that the program only works some
of the time (sound familiar), or it may not work on all
platforms.

• The critical issue to realize all possible

cases that might occur.

09/08/2011 12.010 Lec 01 30

Verification 03

• This takes experience and the more you know about
how computers work, the more likely you are to
realize the exceptions.

• When humans are involved or you are working with
instrument data streams you need to be particularly
careful.

09/08/2011 12.010 Lec 01 31

Next Lecture

• In the next class we:
– Examine basic components of computers
– Number representation
– Methods of approaching the solution to different

classes of computer problems.

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

