
12.010 Computational Methods of
Scientific Programming

Lecturers
Thomas A Herring

Chris Hill

9/13/2011 12.010 Lec 02 2

Review Lecture 01

• Language characteristics:
– Compiled versus interactive
– Numeric versus symbolic

• Algorithm development
– Statement of problem
– Algorithm design
– Algorithm implementation
– Verification

9/13/2011 12.010 Lec 02 3

Today’s Lecture

• Interface to computer hardware
• Computer Basics:

– Memory,
– data transfer,
– number representation

• Example algorithm development

9/13/2011 12.010 Lec 02 4

Computer components

CPU - Central Processor Unit (e.g., G3, Pentium III, RISC)
RAM - Random Access Memory (generally lost when power cycled)
VRAM - Video RAM (amount sets screen size and color depth)
ROM -Read Only Member (used for boot)
IO Input/Output. IO is through interfaces such as SCSI (Small Computer System Interface), USB (Universal

Serial Bus), Firewire (video standard), Ethernet.
HD Hard Disk (permanent storage); CDROM Compact Disk Read-only-memory; CD-RW; DVD Read/Wrire

9/13/2011 12.010 Lec 02 5

Components: OS
• The Operating System (OS)

– Controls everything in the way the computer works.
– Not Specific to a CPU type but often some OS’s are

associated with specific CPU
• G3/4/5 68x series MacOS
• Pentium, x86 DOS (Windows)/Mac OSX
• SPARC Solaris (Unix)
• Intel multi-core processes (Intel core 5)

– OS controls IO and memory management (latter is important
in multi-tasking OS).

• Specific program implementations are often dependent on OS

9/13/2011 12.010 Lec 02 6

Programming interface to OS

• Depending on language used, OS interface may or
may not be important

• For Fortran, C, C++ when program is linked OS
routines are needed
– How to read from keyboard or file?
– How to write to screen or disk?

• In your program you do not need to the details but
some OS routines have more features (details later)

9/13/2011 12.010 Lec 02 7

Hard Disks

• Hard disks: Contains the computer’s "file system"
(allows access through file names)

• Directory structure: Points to where files are located
(reason less space than size of disk+some calibration
tracks).

• Actual contents on HD and directories depend on OS
used (different standards exist e.g, HF HF+ for Mac,
FAT16, FAT32 Windows, EXT2 for Linux

• In general, OS can only use their own file-system.
• Network File System (NFS) allows connections

between different computer systems

9/13/2011 12.010 Lec 02 8

Other data sources

• CDROM: File system is standard so all computers
can read all CDs. (May not be able to use the files
from the CD but can read them)

• TAPE standards a very different systems but media
can be used on different systems

• Correct IO port is needed to attach any device (for
example need SCSI port for SCSI disk)

• Universal Serial Bus (USB Drives): Exchangeable
between systems.

• Internet: Communication protocol is standard

9/13/2011 12.010 Lec 02 9

Computer basics

• Smallest thing a computer knows is a bit 0 or 1
(false/true)

• CPU basically only knows how to perform and, or, xor
(exclusive or) operations
– And returns true if both same
– Or returns true if either true
– Xor returns true if different

• CPU is a massive collection of and and or gates
• A specific CPU has a set of instructions it can

execute (usually small 50-100) (Machine language)

9/13/2011 12.010 Lec 02 10

Basics

• The number of instructions per seconds is set by the
"clock speed" e.g, 500 MHz Pentium III (MIPS)

• One clock tick is called a cycle and modern CPUs
can often execute more than one instruction per cycle

• All programming ultimately ends up as a set of
instructions to executed by the CPU
(compiling/linking or interpreter do this for you).

• Floating point speed is measured in "floating point
operations per seconds" flops.

9/13/2011 12.010 Lec 02 11

Bits/Bytes and words

• To manage things, bits are grouped into larger units
– 2 bits = 1 nibble (don’t see much anymore)
– 8 bits = 1 byte (still common)
– 2/4/8 bytes = word (varies between CPU)
– Most desktop machines are 32-bit words but 64

bits machines are becoming more common (set by
data bus)

– Why important? Sets minimum size unit you can
access in program, and often precision

9/13/2011 12.010 Lec 02 12

Grouping words and bytes

• Number of unique values that can be represented
depends on number of bits

• For n bits: unique values are 2n-1
• For n=8 (byte) = 255
• Grouped into larger units to represent different things
• ASCII (American Standard Code for Information

Interchange)
– Basic version is 7 bit (127 characters)
– A-Z, a-z, 0-9 and special characters
– Values <32 are "control characters"

9/13/2011 12.010 Lec 02 13

Number types

• Numbers represented in different base systems
– Binary base 2 (0-1)
– Octal base 8 (0-7)
– Hexadecimal base 16 (0-15, with A-F representing 10-15)
– E.g, 5410=3616=668=1101102

• Prefixes: kilo = 1024 (2^10); mega=1048576 (2^20);
giga=1073741824 (2^30) (approximately 103,106,109)

• It is becoming more common now to use decimal values instead
of binary versions (i.e., 1000 for kilo rather than 1024). There
seem to be no standard rules for the usage especially for speed
values. Memory usage still tends to be binary version.

9/13/2011 12.010 Lec 02 14

Integer numbers

• Integer numbers can be represented exactly (up to
the range allowed by the number of bytes)

• A 2-byte integer, unsigned 0-65535, signed ±32767
(sometimes called short)

• A 4-byte integer, unsigned 0-4294967295, signed
±2147483827

• (With a 32-bit address bus, can have 4Gbytes of
memory—reason max memory is limited in
computers)

9/13/2011 12.010 Lec 02 15

• Representations vary between machines (often
reason binary files can not be shared).

– Precise layout of bits depends on machine and
format all formats are (mantissa)*2(exponent). (Above
is not IEEE, exponent is 2s-complement in IEEE).

– IEEE: 4-byte floating point is 8 bit exponent, 24 bit
mantissa (1 sign bit for each), 7 significant digits,
range 10±38

Floating point

± ±

Bits to represent value

Exponent Mantissa

9/13/2011 12.010 Lec 02 16

Storage in memory

• Memory in a computer can be treated as a linear
array of bytes from 1-<size of memory>. The OS
should keep track of which parts of memory are being
used and which parts are still free for use by
programs and data.

• Some computers do "byte-swapping" i.e., the bytes
are not counted linearly but rather are switched. The
main (but not only) styles are Big Endian (HP, Sun,
Macs) and Little Endian (PC).

• Affects ability to transfer binary data (TCP knows this
and will switch a certain degree)

9/13/2011 12.010 Lec 02 17

Other usage terms

• Most things are measured in bytes (memory size,
data storage etc.)

• Transfer rates tend to be in "baud" which is "symbols-
per-seconds". Often, but not always, a symbol is a
bit but with modern modems (phase shift keying,
PSK) a symbol may has 4 or more states.

• Bits-per-second is a better measure and often the
term used for transfer rates e.g, 56K modem is 56K
bits per seconds.

9/13/2011 12.010 Lec 02 18

Problem solving

• The clearer you can state the problem you are
solving, the algorithms to used, and the possible
problem areas, the easier your programming will be.

• Rough rule: 90% of time should be spent on design,
only 10% on actually writing code and getting it to
work.

• A good program is like good literature (it should
logically flow)

• All your programs should be written in English before
you start.

9/13/2011 12.010 Lec 02 19

Program structure

• Basically all programs can be broken into three major
parts:
– Input: program collects the information it needs
– Computation: Does the necessary evaluations to

solve the problem
– Output: Output its results for the user

• In an interactive program these parts may be looped
over.

9/13/2011 12.010 Lec 02 20

Language features

• All languages have the following basic features:
– Start and end features
– Input/output commands from and to a variety of

sources
– Decision structure (i.e., conditional branching and

looping structures, error checking)
– Assignment (setting variable to values, computing

results)
– Module structure that allows separation of

functions.

9/13/2011 12.010 Lec 02 21

Features 02

• A program is made up of the appropriate
combinations of these features.

• Between languages the specifics of the features vary
and some have more features than other.

• The syntax is different between all the languages
although there are enough similarities to make it
confusing (e.g., for versus do; end if versus end)

• So while learning the syntax you should keep careful
note of how commands are structured in each
language.

9/13/2011 12.010 Lec 02 22

Specific problem example

• Problem: Find the area of an arbitrarily shaped plane
figure.

• Figure defined by X,Y coordinates of vertices

E

D

 C

B

 A

Y

X

9/13/2011 12.010 Lec 02 23

How do we start solving problem?

• First: Ask questions and lots of them
• What basic algorithm should be used?
• Numerical integration by discretizing the shape? (i.e.. Make a fine grid

over the shape and sum area of grid elements inside shape)
• Has problem that accuracy will be limited by element size in integration.

Runtime will depend on size of grid.
• Break figure into triangles?
• Sounds OK. Can be made arbitrarily accurate

• Look for an analytic solution in a numerical
algorithms book. Hint: Look at Green’s Theorem
which relates an area integral of the curl of a function
to the line integral of the function (see:
http://mathworld.wolfram.com/GreensTheorem.html)

http://mathworld.wolfram.com/GreensTheorem.html

9/13/2011 12.010 Lec 02 24

Sample problem 02

• Let’s say we decide that breaking the figure into triangles is the
algorithm to be used.

• So what will we need to do this:
(a) How do we get the information about the shape into the

program.
(b) A way of computing the area of a triangle
(c) A way of forming triangles from the coordinates.
(d) how do we report the result.
• Algorithms (and routines) to compute areas of polygons can be

found on the web (search "area of polygon"). In programming,
we look at is how build these modules into a complete system
that includes not just the algorithm but also the IO and logic
needed.

9/13/2011 12.010 Lec 02 25

Input options

(a.1) How do we get the information into the program?
(a.2) Consider possible cases:

• (a.3) Input can not be completely arbitrary (although
in some cases it can be)

 (a) OK (b) Non-unique

 C

D
E

B

A C
D

E

B

A

9/13/2011 12.010 Lec 02 26

Input options 02

• In some cases, for an arbitrary set of coordinates the
figure is obvious, but in others it is not

• So how do we handle this?
• Force the user to input or read the values in the

correct order?
• What if user makes a mistake

and generates a figure with
crossing lines?

• Warn user? Do nothing?

How do we define area of black figure ?

Is red figure what we really meant?

9/13/2011 12.010 Lec 02 27

Final

• Finish up this section in Lecture 3.
• As the languages are covered we will explore more

the concept on program development discussed
here.

• Starting lecture 3, we will put this into practice with
Fortran

• Homework #1 is on the web site. It is due Thursday
September 29.

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

