
12.010 Computational Methods of
Scientific Programming

Lecturers
Thomas A Herring

Chris Hill

9/20/2011 12.010 Lec 04 2

Review of last lecture

• Start examining the FORTRAN language
• Development of the language
• “Philosophy” of language: Why is FORTRAN still used

(other than you can’t teach an old dog new tricks)
• Basic structure of its commands
• Communications inside a program and with users
• This lecture will go into commands in more detail
• There are many books on Fortran and an on-line

reference manual at:
http://www.fortran.com/fortran/F77_std/rjcnf0001.html

http://www.fortran.com/fortran/F77_std/rjcnf0001.html

9/20/2011 12.010 Lec 04 3

Today’s Class

• Continue from end of last lecture:
– Communication
– Program compiling and layout

• Fortran Details
– Subroutines and functions
– Intrinsic routine (e.g., sin, cosine)
– Constants and variables (plus example)
– Input/Output

• Open and close statements
• Read and write statements
• Formats

– Character strings

9/20/2011 12.010 Lec 04 4

Communication
• Communications between modules

– Return from functions
– Common blocks (specially assigned variables that

are available to all modules)
– Save (ensures modules remember values)
– Data presets values before execution (during

compilation)
– Parameter (method for setting constants).

9/20/2011 12.010 Lec 04 5

Other types of commands

– Other types of commands
• Open (opens a device for IO)
• Close (closes a device for IO)
• Inquire (checks the status of a device)
• Backspace rewind change position in device, usually a

file).
• External (discuss later)
• Include (includes a file in source code)
• Implicit (we will use in only one form.

Syntax

• Relatively rigid (based on punched cards)
– Commands are in columns 7-72 (option exists for

132 columns but not universal).
– Labels (numerical only) columns 1-5
– Column 6 is used for “continuation” symbol for

lines longer than 72 characters.
– Case is ignored in program compilation (but strings

are case sensitive i.e., a does not equal A)
– Spaces are ignored during compilation (can cause

strange messages)

 9/20/2011 12.010 Lec 04 6

9/20/2011 12.010 Lec 04 7

Program Layout

• Actual layout of program in memory depends on
machine (reason why some “buggy” program will run
on one machines but not others).

• Typically executable layout in memory.

Program and subroutines

Variables/Constants/Com

mon and data

Stack (changes size during

execution).

MEMORY
• Not all machines use a
Stack which is a place
memory is temporarily
allocated for module
variables.
• Good practice to assume
stack will be used and that
memory is “dirty”

9/20/2011 12.010 Lec 04 8

Compiling and linking

• Source code is created in a text editor.
• To compile and link:

f77 <options> prog.f subr.f libraries.a -o prog
Where prog.f is main program plus maybe functions and

subroutines
subr.f are more subroutines and functions
libraries.a are indexed libraries of subroutines and

functions (see ranlib)
prog is name of executable program to run.

• <options> depend on specific machine (see man f77
or f77 -help)

Basic f77 options

• Options differ greatly between different machines although
there are some common ones (these are not universal)

– -c compile only do not link
– -u assume implicit none in all routines
– -ON where N is level of optimization. Optimization can

lead to significant speed increases but on complex
codes can generate strange errors.

– -g compile for debugging
• Typically many more options often to provide for use of old

codes (e.g., -onetrip). We will not explore these but useful
to check if trying to get someone else’s code running.

9/20/2011 12.010 Lec 04 9

9/20/2011 12.010 Lec 04 10

Basic layout and command details

• A basic Fortran program looks like (see poly_area.f for
example).

 program name

* Comments

 Non-executable declarations

 ……

 executable statements

 end

 subroutine sub1

* Comments

 Non-executable declarations

 ……

 executable statements

 return

 end

http://geoweb.mit.edu/~tah/12.010/poly_area.f

9/20/2011 12.010 Lec 04 11

Character of commands

• Modules are invoked by call for subroutines and
assignment statements for functions.

• Certain system level modules are invoked just through
their names. For example
– OPEN Opens a files (takes arguments)
– CLOSE Closes a file
– READ and WRITE are of this type

• User modules or routines (these are the building
blocks) are of types:
– SUBROUTINE
– FUNCTION

9/20/2011 12.010 Lec 04 12

Subroutines (declaration)

Subroutine name(list of variables)
• Invoked with

Call name(same list of variable types)
• Example:

Subroutine sub1(i,value)
Integer*4 I
Real*8 value

In main program or another subroutine/function:
integer*4 j
Real*8 sum
Call sub1(j, sum)

Note: Names of variable do not need to match, just the type needs to
match, although it is good practice to do so if possible

Variables used in subroutines (and functions) are in general are lost after
the subroutine completes execution. Use the “Save” command if
variables values are to be remembered.

9/20/2011 12.010 Lec 04 13

Functions

Real*8 function func(list of variables)

• Invoked with
Result = func(same list of variable types)

• Example
Real*8 function eval(i,value)
Integer*4 I
Real*8 value
eval = I*value

In main program or subroutine or function
Real*8 result, eval
Integer*4 j
Real*8 sum
Result = eval(j,sum)

9/20/2011 12.010 Lec 04 14

Functions 02

• Functions can be of any of the variable types
• The last action of the function is to set its name to the

final result
• The function type must be declared in the main

program (looks like any other variable)
• There are other forms of the declaration. Often simply

function is used and the type declared in the function.
• The function must always appear with the same name

and type.
• Fortran has special functions called intrinsic which do

not need to be declared.

9/20/2011 12.010 Lec 04 15

Intrinsic functions

• These functions are embedded in the language and often go by
“generic names”

• Examples include sin, cos, tan, atan2. Precisely which functions
are available depend on machine.

• Generic names means that the actual loaded code depends on
the variable types used in the call (i.e., if real*8 argument is used
in sin, then the real*8 version of the sin function is loaded).

• Link to standard intrinsic functions
• Not all of the intrinsic listed on this page are available always. If

not available: Get an undefined external message or undeclared
variable when program compiled and linked.

http://www.fortran.com/fortran/F77_std/rjcnf0001-sh-15.html
http://www.met.nps.navy.mil/manual/library_functions_list.html

9/20/2011 12.010 Lec 04 16

Variables and constants

• In Fortran variable names point to an address in memory and so
most of the time when variables are passed only the address is
passed. There is usually no check that information about the
variable type between the modules.

• Character strings are treated differently since the string is defined
not only by an address but also a length. Unlike Fortran arrays,
inside a module you can tell the length of string passed (LEN
intrinsic function). (Fortran90 does have features that allow the
sizes of arrays to be determined: size, shape, lbound,ubound)

• Constants may be passed by address or by value. Passing by
value is the more common technique now.

• Variable type Fortran Program

http://geoweb.mit.edu/~tah/12.010/vars.f

9/20/2011 12.010 Lec 04 17

IO: Read, write, open, close

• These are the main routines used to get data into and out of a
program.

• Format of the read and write commands are:
Read(unit,format,<options>) list of variables
Write(unit,format,<options>) list of variables
Where unit is either:

A numeric number associated with a device or file. Set with an
open statement

* which is generic for screen or keyboard
A character string (call internal reads and writes).

Format is a format statement defining how variables are
read/written or a * for free-format.

9/20/2011 12.010 Lec 04 18

IO Open

• To open a unit number for IO you use the open command. Its
basic format is

Open(unit=nnn,file=<string>, status=<status>,iostat=<ierr>,…)
Where nnn is a numeric value, e.g., 80
<string> is a string containing the file name. This can be a

character variable or the name of the file contained in single
quotes e.g., ‘prog.dat’

<status> is a string with type options
‘unknown’ status unknown
‘old’ file should already exist
‘new’ file should not exist.

9/20/2011 12.010 Lec 04 19

IO Open continued 02

<ierr> is an integer*4 variable for the IO Status (IOSTAT) return.
Most important here is that 0 return means the open was
successful. Any non-zero return means an error occurred and the
file is not open.

The specific numerical values for given types of errors depends on
the machine.

The meaning of the numerical values can be found in the “runtime
error” or “IOSTAT error” section of the manual for the fortran on
your machine. (HP: 908 means file not found, g77 Linux: 2 means
the same, Solaris: 1018).

• There are more options for direct access files (fixed length
records), read-only, to append, binary files (unformatted)

9/20/2011 12.010 Lec 04 20

IO Close

• The close statement closes a unit number.
Close(unit=<nnn>,iostat=<ierr>)

Where <nnn> is the unit number, and
ierr is IOSTAT error for the close.
• For both open and close, the unit= is not needed and

the numeric value of the unit number of all that is
needed.

• The unit number can be an integer*4 variable
containing the unit number.

• In some cases, the default compilers require the unit
number be less than 99.

9/20/2011 12.010 Lec 04 21

Open/close

• Some unit number are automatically opened when a
program is executed.

• Unit 5 is for reading from keyboard
• Unit 6 is write to screen
• Unit 0 is often (but not always) the error output device.
• You should not close units 5 or 6
• Generically, * can be used in read and write for

reading from keyboard and writing to screen. This is
the preferred option.

• For reads and write to * or 5 or 6, the Unix IO redirect
can be used (< file, > file, or | for piping.)

9/20/2011 12.010 Lec 04 22

Read/Write

• For read and write the most common <option> is
IOSTAT=ierr which allows the IO error during
read/write to be checked.

• If the IOSTAT= option is not included, and an error
during reading or writing then your program will “core
dump” or “abort”

• When the IOSTAT= option is included, it is your
responsibility to check that the return is zero.

• The most common return is -1 mean End-of-file has
been reached.

• Other options exist for reading specific records from
direct access files

9/20/2011 12.010 Lec 04 23

FORMAT

• Allows the format of input or output to specified.
• There are two ways to specify a format:

– A numeric label can be given which refers to labeled format
statement

– A character string containing the format can be given.
• The following two cases generate the same result.

Write(*,100) I
100 format(‘ The integer value is ‘,i4)

Form = ‘(” The integer value is “,i4)’
Write(*,form) I

• Note the use of single and double quotes

9/20/2011 12.010 Lec 04 24

FORMAT arguments

• The options in the format statements are:
– Strings inside single or double quotes are written as is.
– For numbers the generic type is <T><n>.<m>
Where T is for type; I integer, F floating point notation, E

exponential, L logical, A for character strings, G for F and E
combination !!

<n> is total width of field
<m> is decimal places or leading zeros.
Examples: if 22.7 is written with:
F8.3 ^^ 22.700 (with spaces (^) 8 characters wide, 3 DP)
E11.3 ^^ 0.227E+02
For integer 10 I4.3 -> ^ 010 (The symbol ^ means space)

9/20/2011 12.010 Lec 04 25

FORMAT 02

• Character strings are output with the a format
A10 would write 10 characters, left justified (if the string

to printed is longer than this it is truncated).
A without any numeric value following it will print the full

declared length of the string.
• Other control characters are:
/ — carriage return, start a new line
Nx — print N spaces where N is integer
Enclosing part of the format in parentheses with with a

numeric argument in front, repeated that parts of
format N times, e.g., 20(I4,2x)

9/20/2011 12.010 Lec 04 26

Character strings

• Character strings are treated differently in Fortran than
other variable types because an address and length is
passed with the name.

• In side modules: Strings that are passed in can be
declared as
Character*(*) <string name>

Where the second * says use the “passed length” of
the string.

(Homework number 2 which will be due Oct 20 will use
these concepts).

9/20/2011 12.010 Lec 04 27

Summary of Today’s class

• Fortran Details
– Subroutines and functions
– Intrinsic routine (e.g., sin, cosine)
– Constants and variables (plus example)
– Input/Output

• Open and close statements
• Read and write statements
• Formats

– Character strings
• For the remainder of the class; examine, compile and run the

poly_area.f and test programs: loops.f, ifs.f, inout.f and subs.f
• vars.f is a special examples program.
• Try modifications of these programs and see what happens.

http://geoweb.mit.edu/~tah/12.010/poly_area.f
http://geoweb.mit.edu/~tah/12.010/vars.f
http://geoweb.mit.edu/~tah/12.010/loops.f
http://geoweb.mit.edu/~tah/12.010/ifs.f
http://geoweb.mit.edu/~tah/12.010/inout.f
http://geoweb.mit.edu/~tah/12.010/subs.f

9/20/2011 12.010 Lec 04 28

Exercises using FORTRAN

• In this exercise session we will write some simple FORTRAN
programs:

– Write a simple program that writes your name to the screen
– Compile and load the poly_area.f program from the web page.

Test the program to see how it works
– Compile and run the other programs from the web page.
– Compile and load the vars.f routine from the web page. Test

the following modifications to the program:
• In the first call to var_sub_01, replace j with an integer constant

and see what happens
• To run fortran:

gfortran <options> <source files> -o <program name>
e.g. gfortran poly_area.f -o poly_area

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

