
12.010 Computational Methods of 
Scientific Programming 

Lecturers 
Thomas A Herring 

Chris Hill 

 



09/29/2011 12.010 Lec 07 2 

Review and today’s lecture 

• So far we have covered most of the features of Fortran 77 
although there are still a number of structures and methods that 
we have not explored. 

• It is important to remember that there is nearly always multiple 
ways, all valid, of doing the same thing. 

• Today we look at the features of Fortran90 that make it different 
from Fortran77.  In some cases, these features are one that 
have commonly been available in many versions of Fortran77 
(so called language extensions). 
 



09/29/2011 12.010 Lec 07 3 

F90/95 Syntax improvements 

• Lines are no longer of fixed format (i.e., no need to start in column 
7 and limited to column 72). 

• Variable names can be longer 32 characters and _ is officially 
allowed in variable names. 

• Any characters after a ! are treated as comments (many fortran77 
compilers allow this already) 

• If lines are to be continued then a & character is used at the end. 
• The logical expressions >, <, ==, <=, => and /= replace the .gt. .lt. 

etc forms.  (Note: the negating character is /) 
• Multiple commands can appear on same line separated by ; 
• The “do … end do” structure is official in f90  



09/29/2011 12.010 Lec 07 4 

Variable attributes 

• The methods of declaring variables has been extended and 
enhanced.  The basic form is: 
<type>, <attribute> :: name=initialization 

• Examples are 
integer, parameter :: n = 100 
real ( kind=8), dimension(n,n) :: a,b 
(The real*8 form also works) 

• For variables being passed into subroutines there is the INTENT 
attribute 
real, intent(in) :: real_in; real, intent(out) :: real_out 
Allows specification of how variables will be used in subroutines. 
(inout) used for both in and out variables. 

• The new feature (making f90 more like c) the ALLOCTABLE 
attribute: 
real (kind=8), allocatable, dimension(:,:) :: matrix 



09/29/2011 12.010 Lec 07 5 

Array features 

• Array manipulation: overloading of the math symbols for array 
manipulation.  If a, b, c are arrays, then 
c = a*b ; ! Multiply the elements of a and b and save result in c.  
All the arrays must be same size and works for multi-dimensional 
arrays 

• The allocate( matrix(n,m), status=istat) can be used to set the 
size of an allocatable array; deallocate (matrix) frees the memory; 
and allocated(matrix) is true if matrix has already been allocated 
in program 

• Array sections can addressed: a(n:m:inc) where inc is assumed 1 
if not specified. 

• Array constructors: a = (/ (i,i=1,20) /)  ! The arrays must be 
conformable (i.e., elements on LHS and RHS must be the same. 
a(1:19:2) = (/ (i,i=1,20,2) /) will assign every second element 
 



09/29/2011 12.010 Lec 07 6 

INTERFACE BLOCKS 

• These are designed to ensure that subroutine and 
functions are consistently called 
INTERFACE 
    subroutine sub1(array,n) 
    real :: array(n) 
    end subroutine 
end interface 

• With the interface statements included, the compiler 
can check that subroutines are called with the correct 
arguments (incorrect arguments is a common cause of 
run-time segmentation violations.) 

• Similar to the proto-type function in C 



09/29/2011 12.010 Lec 07 7 

MODULE and USE statement 

• This construct is used declare arrays that can be shared between 
routines and to define procedures 

• Two forms: data sharing method 
MODULE test 
! Declare data to share 
<declarations of arrays etc> 
end module test 

• In subroutines and programs, immediately after program or 
subroutine declaration 
USE test 
allows access to the contents of the declared arrays.  The SAVE 
statement should be used in the module declaration to ensure 
that memory contents is not lost. 



09/29/2011 12.010 Lec 07 8 

MODULE and USE Statement 

• The other form is for procedure declarations 
MODULE mysubs 
CONSTAINS 
     subroutine sub1( arguments) 
     <declarations and code for sub1> 
     end subroutine 
end module 

• In program and subroutines add 
use mysubs 
immediately after the program/subroutine statement to 
make mysubs routines available.  In this form the 
interface statements are automatically generated. 



09/29/2011 12.010 Lec 07 9 

Array inquiry functions 

• F90 allows the sizes of arrays to be determined inside 
subroutines (similar to character string features in f77) 

• SIZE returns the size of an array 
SIZE(array, dim) dim is optional and returns an array of sizes for 
higher dimension arrays 
SHAPE(array) returns an array with the shape (number of 
dimensions, and sizes) of any “array” 
LBOUND(array, dim)  returns lower bounds on array indices 
UBOUND(array, dim) returns upper bounds on array indices 

• SIZE can be used in a dimension statement in a subroutine so 
that the correct size is allocated if a copy of an array is needed 
subroutine sub(a) 
real, dimension(:) :: a 
real, dimension(size(a)) :: b 
b = a 



09/29/2011 12.010 Lec 07 10 

Array transformation function 
• F90 supports a number of intrinsic function that allow 

manipulations of arrays. 
 Array construction functions 

   o SPREAD, PACK, RESHAPE, ...        
 Vector and matrix multiplication 
   o DOT_PRODUCT, MATMUL        
 Reduction functions 
   o SUM, PRODUCT, COUNT, MAXVAL, ANY, ALL...        
 Geometric location functions 
   o MAXLOC, MINLOC        
 Array manipulation functions 
   o CSHIFT, EOSHIFT, TRANSPOSE 
• A fortran 90 manual will explain the uses of these functions.  One 

feature is that they all allow a logical MASK to be specified that 
sets the elements to be operated on.  (Similar to some MATLAB 
features). 
 



09/29/2011 12.010 Lec 07 11 

KEYWORD and OPTIONAL 

arguments 
• When interface or module structure is used, 

subroutines can be called with argument names: 
real function calc ( first, second, third)  ! In module 
then usage can be: 
a = calc (second = 2., first=1., third = 3.) 

• This can be powerful when combined with the 
OPTIONAL attribute in the function/subroutine 
declarations of variables i.e., in function 
real, intent(in), optional :: third 
PRESENT(third) will be true of third argument was 
passed. 



09/29/2011 12.010 Lec 07 12 

Summary of f90 changes 

• Many of the changes in f90 reflect the growing need to keep 
modules consistent and to allow better compiler detection of 
problems in the code. 

• The array manipulation features allow more compact code to be 
written 

• In f90 arrays are best thought of as “objects” which carry not only 
data in them but also information about what the array is. 

• The concepts of objects will appear again in c++ and matlab. 
• Homework #2 is posted; Due Thursday Oct 20, 2011. 
• gfortran is f90/95 but compiles fortran 77; g77 has some but not 

all f90/95 features.    



MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

