
12.010 Computational Methods of
Scientific Programming

Lecture 9

Today’s lecture
•C in more detail

10/06/2011 12.010 Lec 09 2

Summary

• LAST LECTURE
• Basic C

– Syntax v. Fortran
• THIS LECTURE

– Examined C-pointers
– File Input/Output and the routines for formatted reads and

writes
– Compiling C routines
– The C preprocessor cpp.
– Structures in C
– Memory management

10/06/2011 12.010 Lec 09 3

Call by reference
• In call by reference, the address of a variable (called a pointer) is passed to the

function. The value stored at this address can be changed but not the address
itself (arguments to C functions can never be changed).

• Example:
int mymax(*float, *float); /* Prototype. The *float is a pointer to (address of)

a floating point number */
main ()
{
 float a,b; int ans;
 a=b=2.;
 ans= mymax(&a,&b); /* 1 if a > b, 2 if b > a, 0 otherwise */
 /* set a and b = to max. value */
 }
int mymax(float *a, float *b)
{
 if (*a > *b) {*b=*a;return 1;}
 if (*b > *a) {*a=*b;return 2;}
 return 0;
}

10/06/2011 12.010 Lec 09 4

Addresses - *, &

• C allows very explicit addressing of memory locations
with the concept of “pointers” (points to memory
location)

short a; short *ptr_to_a;
a = 1;
ptr_to_a = &a;
Computer Memory

0001

0x00 0xFF

&a a (value stored at &a)

10/06/2011 12.010 Lec 09 5

Example of pointer use

• The following code examines how pointers can be used.
main ()
{
 char c='A', *p, s[100], *strcpy();
 p = &c ;
 printf("\n%c %c %c", *p, *p+1, *p+2);
 s[0] = 'A' ; s[1] = 'B'; s[2] = 'C'; s[3] = '\0';
 p = s;
 printf("\n%s %s %c %s",s, p, *(p+1), p+1);
 strcpy(s,"\nshe sells seas shells by the seashore");
 printf("%s",s);
 p += 17;
 for (; *p != '\0' ; ++p){
 if (*p == 'e') *p = 'E';
 if (*p == ' ') *p = '\n';
 }
 printf("%s\n",s);
}

Output of Program
A B C

ABC ABC B BC

she sells seas shells by the seashore

she sells seas shElls

by

thE

sEashorE

10/06/2011 12.010 Lec 09 6

File input/output
• To use files in C, the stdio.h header needs to be included. This

contains a structure called FILE.
• Code for file use contains

FILE *fp, *fopen();
fp = fopen(“file name”,”r”);

• fp will return NULL if file could not be opened.
• The options for open are “r” read; “w” write; “a” append
• The file name is a variable would be declared

char file_name[100];
• With stdio.h included, stdin stdout and stderr are pointers to the

keyboard, screen and error output (direct output to screen with
little or no buffering).

• fclose(fp) will close the file (needed if written in one part of
program and read in another). Automatically happens when
program stops.

10/06/2011 12.010 Lec 09 7

Reading/writing files

• To read files:
– getc(fp) : Gets next character in file
– fgetc(fp) : Same but function not macro
– getchar() : Similar but reads from stdin
– fgets(s,n,fp) : Gets string of n-1 characters or until a newline

character is read (\n)
– gets(s) : Similar but reads from stdin
– putc(c,fp) : Outputs a character (putchar to stdout)
– fputs(s, fp) : null terminated string sent to file. (puts goes to

stdout).
• fseek and other functions allow more control of moving through

file.

10/06/2011 12.010 Lec 09 8

Reading/writing
• The main reading/writing routines are:

printf, fprintf, sprintf : Output formatted lines to stdout, a file
pointer and string
scanf, fscanf, sscanf : Input formatted lines stdin, a file pointter or
a string.

• Format used:
%nc - prints character in n-width right justified; %-nc is left

justified.
%n.ms - n character string into m width right justfied, %-n.ms is

left justified, %s whole string to \0
%n.md int ouput (%-n.md left justified)
%n.mf floating point
%n.me exponential format
Others include o for octal, x for hexidecimal, g for e/f

combination

10/06/2011 12.010 Lec 09 9

Compiling and linking

• Source code is created in a text editor.
• To compile and link:

cc <options> prog.c funcs.c -llibraries -o prog
Where prog.c is main program plus maybe functions

funcs.c are more subroutines and functions
libraries.a are indexed libraries of subroutines and functions (see

ranlib)
prog is name of executable program to run.

• <options> depend on specific machine (see man cc or cc --help)
• -llibraries refers to precompiled library in file liblibraries.a

10/06/2011 12.010 Lec 09 10

C preprocessor (CPP)

• precompile macros and options; “compiler” proper does not see CPP
code.

• Also stand alone cpp; other compilers e.g. .F files fortran – (not in java!)
• #include - file inclusion
• #define - macro definition
• #undef - undefine macro
• #line - compiler messages line number (not

 really for general use)
• #if, #ifdef, #ifndef, - Conditional compilation
• #else, #elif, #endif
• __FILE__, __LINE___ (ANSI C).

10/06/2011 12.010 Lec 09 11

C preprocessor (CPP)

• #include “fred.h” - includes contents of file fred.h in
 program. –I cpp flag sets path to search for
 fred.h

• #define PI 3.14159 - substitutes 3.14159 everywhere PI
 occurs in program source. (except in
 quotes).

• #undef PI - stops substitution
#ifdef PI
 printf(“pi is set to %f in file %s\n”,PI,__FILE__);
#else
 printf(“pi is not set. Line %d file %s\n”,
 __LINE__,__FILE__);
#endif

10/06/2011 12.010 Lec 09 12

C preprocessor (CPP)

• Macros with args
#define _getaddress(a) (&a) /* This macro returns address of a */
main() { double n; double *ptrToN;
 ptrToN = _getadress(n); }
• Compiler actually sees code below
main() { double n; double *ptrToN;
 ptrToN = &n; }

• Often used for debuging
#ifdef debug
 #define _D(a) a
#else
 #define _D(a)
#endif

10/06/2011 12.010 Lec 09 13

Structures and Types
• Way to group things that belong together

– e.g. Representing 3d coord (x,y,z)
– No structures
double cx, cy, cz;
cx=3.;cy=3.;cz=2;
plot(cx, cy, cz);
– Structure
struct { double cx; double cy; double cz; } point;
point.cx = 3.; point.cy=3.;point.cz=2.;

• Selection operators for structures: If coord is a structure
and cptr is a pointer to coord, then element cx e.g. can be
accessed by coord.cx or (*cptr).cx or cptr->cx. Latter two
are indirect (or pointer) element selections.

10/06/2011 12.010 Lec 09 14

Structures and Types

• Struct alone is still unclear - typedef
 typedef struct { double cx;
 double cy;
 double cz; } t_point;
 main() {
 t_point point;
 point.cx = 3.; point.cy=3.; point.cz=2.;
 plot(point);
 }

10/06/2011 12.010 Lec 09 15

Structures and Types
• Derived types just like basic types

– e.g. can use arrays
• typedef struct { double cx;
 double cy;
 double cz; } t_point;
 main() {
 t_point point[10]; int i;
 for (i=0;i<10;++i) {
 point[i].cx = 3.; point[i].cy=3.; point[i].cz=(double)i; }
 for (i=0;i<10;++i) {
 plot(point[i]); }
 }

10/06/2011 12.010 Lec 09 16

Memory Management

• Application code creates variables and arrays at runtime
• <stdlib.h> - malloc, calloc, free, realloc + sizeof
• e.g
 main(int argc, char *argv[]) {
 double *foo; int nel; int i;
 /* Create an array of size nel at runtime */
 sscanf(argv[1],“%d\n”,&nel);
 foo = (double *) calloc(nel,sizeof(*foo));
 if (foo == NULL) exit(-1);
 for (i=0;i<nel;++i) { foo[i]=i; }
 free(foo);
}

10/06/2011 12.010 Lec 09 17

Remember - *, &
short a; short *ptr_to_a;
a = 1;
ptr_to_a = &a;
*ptr_to_a = 1;

0001

0x00 0xFF

&a

a

foo = (double *) calloc(3,sizeof(*foo));

0001 0002 0003

Here compiler

allocated

memory for

you

Here application allocates

memory explicitly.

Allows more control but requires

careful bookkeeping.

10/06/2011 12.010 Lec 09 18

Summary

• Examined C-pointers
• File Input/Output and the routines for formatted reads

and writes
• Compiling C routines
• The C preprocessor cpp.
• Structures in C
• Memory management

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

