
12.010 Computational Methods of
Scientific Programming

Lecturers
Thomas A Herring

Chris Hill

10/13/2011 12.010 Lec 11 2

Summary

• Finished up C with structures and memory management
• Started with C++

– C++ is C with the addition of “classes”
– Class is a formal way to think about good program design.

• Modularity, encapsulation, hierarchy, abstraction
– A class has

• Methods (program logic)
• Data (variables)
• can be private or public

• Today:
– Example class in an example
– Inheritance
– Overloading (allows re-definition of methods for certain

classes)

10/13/2011 12.010 Lec 11 3

String

set()

s()

uString

set()

s()

String s;

s.set(“Hello”);

printf(“%s\n”,s.s());

Hello

uString s;

s.set(“Hello”);

printf(“%s\n”,s.s());

HELLO

Inheritance

• Want new class uString. Like String except that the
strings will be converted and stored in upper case. e.g.

10/13/2011 12.010 Lec 11 4

uString extends String

• No need to write uString from scratch.
• Inherit most code from String.
• Extend String::set to capitalise.
• A uString is a String with some extra feature.

String

set()

s()

uString

Base class

Derived class

10/13/2011 12.010 Lec 11 5

•New interface for uString

/* Extend String class to uString */
/* uString stores strings as upper case */
class uString : public String {
 public:
 void set(char *); /* Set a uString */
};

C++ Inheritance Example

10/13/2011 12.010 Lec 11 6

/* Set str to point to a private copy of s */
void uString::set(char *s) {
 int i;
 String::set(s);
 for (i=0;i<strlen(s);++i) {
 if (str[i] >= 'a' && str[i] <= 'z') {
 str[i] = toupper(str[i]);
 }
 }
}
Return to concept of protected and private later in class

uString set method

Base class method

“protected”

(not “private”)

10/13/2011 12.010 Lec 11 7

main()
{
 String s1;
 uString s2;

 printf("Executable code starting\n");

 s1.set("Hello");
 printf("%s\n",s1.s());
 s2.set("Hello");
 printf("%s\n",s2.s());

 printf("Executable code ending\n");
}

uString in action!

10/13/2011 12.010 Lec 11 8

Application Example
Throwing a ball in the air

Get initial velocity and length

of “experiment”.

Calculate time evolution of w

and z.

Print out “trajectory”

w0

z
ò+=

+=

t

wdtzz

gtww

0

0

0

z0

10/13/2011 12.010 Lec 11 9

main ()
{ float t=10.; float w0=10.;
 t_gball *theBall;/* Stats for the ball */

 /* Allocate space for full ball time history */
 createBall(w0, &theBall);
 /* Step forward the ball state */
 stepForwardState(t, &theBall);
 /* Write table of output */
 printTrajectory(t, w0, theBall);
}

C “Procedural” Form

10/13/2011 12.010 Lec 11 10

main()
{float w0 = 10.; float t=10.;
 Ball b;
 b.initialize(w0);
 b.simulate(t);
 b.printTrajectory();
}

All info. is held in “b”. Fewer args, cleaner
“abstraction”.

C++ Using “Ball” Class

10/13/2011 12.010 Lec 11 11

main ()
{ float t=10.; float w0=10.;
 t_gball *theBall;/* Stats for the ball */

 /* Allocate space for full ball time history */
 createBall(w0, &theBall);
 /* Step forward the ball state */
 stepForwardState(t, &theBall);
 /* Write table of output */
 printTrajectory(t, w0, theBall);
}

C “Procedural” Form

10/13/2011 12.010 Lec 11 12

main()
{float w0 = 10.; float t=10.;
 Ball b;
 b.initialize(w0);
 b.simulate(t);
 b.printTrajectory();
}

All info. is held in “b”. Fewer args, cleaner
“abstraction”.

C++ Using “Ball” Class

10/13/2011 12.010 Lec 11 13

Overloading

coord

=()

+()

Can redefine operators e.g. + to operate on classes
e.g.

coord p1, p2, p3;

p3 = p1 + p2

This would then do

if p1=p2=(1,1,1) p3 = (2,2,2)

10/13/2011 12.010 Lec 11 14

class coord{

 public:

 coord operator+(coord);

private:

 int cx; int cy; int cz;

};

coord coord::operator+ (coord c2)

{ coord temp;

 temp.cx = cx + c2.cx;

 temp.cy = cy + c2.cy;

 temp.cz = cz + c2.cz;

 return(temp);

}

Overloading

• Have to define the meaning of + and = for a coord
class object. Language defines meaning for integer,
float, double etc but now we can define extra
meanings.

Using namespace

• A namespace is a way of keeping classes and
variables separate.

• The most common form seen in codes is:
using namespace std
which gives access to methods such as cout and cin

• Example:
 cout << “Message to screen” << endl

will output the message and a new-line character. If
the namespace is not used then
std::cout << “Message to screen” << std::endl;
will do the same thing

 10/13/2011 12.010 Lec 11 15

Example with variables

• Variables with the same name can have different
values when used in different name space.

• Access to methods and variables is through syntax
namespace::variables or namespace::method
(later form is in cout example)

• Example of namespaces is in on code example link
under instructions in the class web page

• Example code:
http://geoweb.mit.edu/~tah/12.010/namespace.cc

10/13/2011 12.010 Lec 11 16

http://geoweb.mit.edu/~tah/12.010/namespace.cc

Protected versus private

• These two declarations determine which methods can
access a member of class.

• An example is on the “link to code examples” page
given in the instructions part of the web page.
http://geoweb.mit.edu/~tah/12.010/protect.cc

• Protected and private set which methods can change
the values of variables.

• A protected method can not be directly access in a
class but through inheritance and by being public the
method can be accessed. If it is declared private an
inherited class can not access it (replace protected
with private and try to compile).

10/13/2011 12.010 Lec 11 17

http://geoweb.mit.edu/~tah/12.010/protect.cc

10/13/2011 12.010 Lec 11 18

Conclusion

• C and C++: Characteristics similar to Fortran: Core program
languages which are very powerful but programmer needs to do
much of the work

– Libraries of routines can be made and are available but these
need to be carefully designed in C and Fortran (potentially
routines can cause problems)

– C++ classes minimize some of these problems but do not
eliminate them completely.

– Good modular program design can minimize problems.
• Remainder of class: Examine C++ examples and contrast Fortran

and C if time available (see link on class web page)
C_Basics.html C_Fortan_compare.html C_Pointers.html

• Homework 3 has been posted to web site (Due November 3,
2011)

http://mitgcm.org/~cnh/12.010/2005/Lec08/Lec08_examples1.html
http://geoweb.mit.edu/~tah/12.010/C_Basics.html
http://geoweb.mit.edu/~tah/12.010/C_Fortan_compare.html
http://geoweb.mit.edu/~tah/12.010/C_Pointers.html

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

