12.010 Computational Methods of
Scientific Programming

Lecturers
Thomas A Herring
Chris Hill

Mathematica

 History
— Developed between 1986-1988 at Wolfram Research
— Mathematica 1.0 released in 1988
— Mathematica 2.0 released in 1991
— Mathematica 3.0 released in 1996 (typesetting)
— Mathematica 4.0 released in 1999 (performance)
— Mathematica 5.0 released in 2004 (performance and features)
— Mathematica 6.0 released in 2007 (added features)
— Mathematica 8.0 Current version

* License for program lasts one year and older versions do not run
even with current license.

10/20/2011 12.010 Lec 12 2

Basics of Mathematica

» Code developed for Mathematica can be generated
while working in Mathematica.

* The Mathematica Note books (.nb extent to name) can
be used to save this development

* When working in Mathematica, help files are available
to guide usage and there can be instant feed back if
there is a problem in the code.

 We will use a Mathematica Notebook in this class to
demonstrate the ideas in the notes.

10/20/2011 12.010 Lec 12 3

Mathematica Features*

» Code (numerics, and control)
* Numerical calculations to arbitrary precision
» Symbolic calculations (algebra and calculus)
» Graphics
* Notebooks
» Several useful formats

— command line

— typeset equations

— tabular data, and many more

— Conversions to different “languages”

 These features are demonstrated in the
http://geoweb.mit.edu/~tah/12.010/12.010.Lec12.nb

10/20/2011 12.010 Lec 12

http://geoweb.mit.edu/~tah/12.010/12.010.Lec12.nb

Mathematicas:

» Consists of two programs
— "kernel" (does all the computations)
» evaluates expressions by applying rules
— "front end" (user interface and formatting)
— Mathematica itself is written mostly in C
« Syntax follows rules, but errors are usually forgiving
« Basic Structure:
— File types:
« Mathematica code (end in ".m" by convention)
« Mathematica notebook (end in ".nb" by convention)

 Mathematica evaluates expressions by applying rules, both
those that have been defined internally and those defined by the
user, until no more rules can be applied.

10/20/2011 12.010 Lec 12 S}

Mathematica: Context of Use

* Mathematic notebooks can be used in research groups

— beginning students need a place to start

— graduating students leave a legacy

— some alumni still contribute to Mathematica "packages”
» Upside

— extremely powerful (integrated work environment)

— dramatically decreases development time
* Downsides

— slower number crunching (compile or link to C). Improves with
each version.

— memory (this has vastly improved)
— single supporter of the language (Wolfram Research)

10/20/2011 12.010 Lec 12 §)

Mathematica Features

* Notebooks
— easy to document work as you produce it
« State of the art numerical and symbolic evaluation
 Variable names usually say exactly what the variable is
— not a problem, since a lot can be packed into a symbol
» Contexts
» Packages
* Link to C code for number crunching
» Typesetting (TeX)
» Conversion to Fortran and C-code
* Function arguments pass by value
— more like mathematical notation

10/20/2011 12.010 Lec 12

Conventions

 system symbols begin with upper case letter
 user symbols begin with lower case letter

« Function arguments are enclosed in [] (square
brackets)

« Parentheses are used to assign precedence (normal
use)

«{ } are used to enclose lists (each item in list can be
then acted on).

10/20/2011 12.010 Lec 12

Basic Structure 02

— Variable types”
 Integer (machine size or larger)
« Rational (ratio of integers with no common divisors)
« Real (machine double precision or larger)
« Complex (machine double precision or larger)
« String (can be arbitrarily long)
« Symbol
 List (set of anything -- used more than Array)
* virtually any other type can be defined

— Variable types tend to naturally get set by
Mathematica and user does not need to be explicit.
The Head[variable] tells type of entity (see nb).

10/20/2011 12.010 Lec 12

Basic Structure 03

— Constants: Numerical or strings, as defined by user; E, |, Pi,
and others defined by the system
— 1/O
* Open and Close
 Read (various forms of this command)
« Write (again various forms)
 Print (useful for debug output)
« Can define how results are read and written.
— Math symbols: * / + - A(power) = (immediate assignment) :=

(delayed assignment). Operations in parentheses are
executed first, then #, /, and *. + - equal precedence.”

10/20/2011 12.010 Lec 12 10

Basic Structure 04

— Control

If statement (various forms)
Do statement (looping control, various forms)
Goto (you will not use in this course)

— Termination

Nothing special, just the last statement

— Communication between modules

10/20/2011

Variables passed in module calls. One form:
— Pass by value (actual value passed)

Global variables

Return from functions

Contexts isolate variables of the same name (see NB). Contexts
define areas where variables are separated. Useful way to avoid
“clobbering” values in rest of program.

12.010 Lec 12 11

Syntax

* Free form
— Case is not ignored in symbols and strings
— Spaces are interpreted as multiplies!

—; at end of a line suppresses echoing of a result

« must use at end of statements in Module, except for the
last

— Comments are enclosed in (* ¥)

 Version 8 has a new free form input method in which
plain text is typed and Mathematica tries to the convert
to code. Under insert select “In-line freeform”

10/20/2011 12.010 Lec 12 12

Compiling and Linking

e Source code is created in Mathematica or a text editor.
» To compile and link: (not necessary)

 Mathematica code needs to run within Mathematica.
There is MathReader that allows notebooks to be read
without the need to buy Mathematica. (These note
books can not be changed).

 Version 8 does allow nb-to-C conversion and then
generation of stand-alone executable. We will not
explore this.

10/20/2011 12.010 Lec 12 13

Detalls on Functions

* Functions can be defined with the structure (see NB):

h[x_] := f(x)+g(x)
would define a new function h that is equal to function
f(x) + function g(x). These functions are symbolically

manipulated.

* Modules are invoked by defining Module and
assignment statements for functions.

* Need to be careful not to use in variable names.
This symbol can only be used as shown above.

10/20/2011 12.010 Lec 12 14

Subroutines (declaration)

name[v1l_Type, ...] :== Module[{local variables}, body]
Type is optional for the arguments (passed by value)

* Invoked with
name[same list of variable types]

» Example:
sub1[i_] := Module[{s}, s =i +i*"2 + i*3; Sqrt[s]]

In main program or another subroutine/function:
sum = sub1[j]

Note: Names of arguments do not need to match those
used to declare the function, just the types (if declared)
needs to match, otherwise the function is not defined. *

10/20/2011 12.010 Lec 12 15

Summary

 Introduction to Mathematica and use of notebooks.

» Since Mathematica is a self contained environment,
help is readily available.

» Use of the Mathematica Help:

— When looking at functions etc; look of examples at
the bottom this is often a good way to get an idea of
how to use the function. Eg., under numerical
computations, equation solving, NDSolve examples
of solving differential equations (Hint: Question 3 of
the homeworks, is the solution to an ordinary
differential equation)

10/20/2011 12.010 Lec 12 16

MIT OpenCourseWare
http://ocw.mit.edu

12.010 Computational Methods of Scientific Programming
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

