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Overview Today 
• Solution of ordinary differential equations with 

Mathematica and Matlab. 
• Examine formulations: 

– Mathematica 2-nd order (and higher order) ODE 
can be directly solved with NDsolve 

– Matab solved first order differential equations and 
so second order equations need to be reduced to 
pairs of first order equations. 

• Both program allow specific results to be found such 
as a zero crossing. 
 



Codes used in today’s lecture 
• Mathematic notebook  

http://geoweb.mit.edu/~tah/12.010/Lec19_NDsolve.nb 
• Matlab solutions are  

http://geoweb.mit.edu/~tah/12.010/Lec19_ODE.m  
http://geoweb.mit.edu/~tah/12.010/Lec19_animate.m  
http://geoweb.mit.edu/~tah/12.010/Lec19_hit.m 
http://geoweb.mit.edu/~tah/12.010/Lec19_bacc.m 
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http://geoweb.mit.edu/~tah/12.010/Lec19_NDsolve.nb
http://geoweb.mit.edu/~tah/12.010/Lec19_ODE.m
http://geoweb.mit.edu/~tah/12.010/Lec19_animate.m
http://geoweb.mit.edu/~tah/12.010/Lec19_hit.m
http://geoweb.mit.edu/~tah/12.010/Lec19_bacc.m
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Equations to be solved 
• Problem: High flying ballistic missile where changes in 

gravity with height and drag are important.  The 
boundary conditions are initial velocity and launch 
angle which need to be set to hit a target at a specified 
distance. 

• Two parts to this problem:  
– Solving a pair of second order differential equations 

and determining a precise end to the trajectory. 
–  Once this is solved, an iteration can be set up to 

work out what initial velocity and launch angle is 
needed to reach target distance. 
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• Basic equation to solve is 
 
 
 
where x is position vector, superscript double is 
second time derivative, superscript dot is first time 
derivative, k is drag force coefficient, h is coefficient 
which shows an acceleration dependent on position 
and g is constant acceleration.  

• If k and h are zero, then this equation can be solve 
analytically.   

Differential equations 

  

˙ ̇ x k( ˙ x )2 hx g = 0

 

–

 

–

 

–
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More basic equations 

• We solve the problem in 2-D so that vector x has 
components x and z. 

• Equation for gravity 
 
 
 

• Drag effects 
 
 
where V is velocity, r is density of air (1.29 kg/m3 with 
an exponential decay height of 7.5 km) 

  

F =
GMm

r2 =
GMm

(R + h)2
GMm

R2 (1 2h /R) = (9.806 3.0784 10 6h)m

  

Fd = 1
2
Cd V

2A ˆ V 

 

×

    

ρ
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–
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Mathematica Setup 
• To solve this problem in Mathematic use NDSolve. 
• solution = NDSolve[ 

{z''[t] == grav[z[t]] + dragz[cd, x'[t], z'[t], z[t]],  
 x''[t] == dragx[cd, x'[t], z'[t], z[t]], 
 x[0] == 0, z[0] == 0,   
x'[0] == vx, z'[0] == vz}, 
 {x, z}, {t, 0, 1000}]; 
hz[t_] := Evaluate[z[t] /. solution]; 
hx[t_] := Evaluate[x[t] /. solution]; 

• First two equations are 2nd order differential equations to solve 
(z’’ and x’’); grav and dragz/x are functions); the terms below 
this are boundary conditions. Last trwo entries are one way to 
access the values of the solution (i.e., hz[100] will return value of 
z at time 100 seconds. 
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Mathematic setup 
• The functions needed here are: 

Gravity here depends on height (x - coordinate) *) 
grav[z_] := -9.806 + 3.0786 10^(-6) z; 
(* Drag also depends on height because the air density 
decreases with height *) 
dragz[cd_, xd_, zd_,  
   z_] := -(1.29*Exp[-z/(7500.)]*Sqrt[xd^2 + zd^2]*zd*cd* 
      xarea)/(2 mass); 
dragx[cd_, xd_, zd_,  
   z_] := -(1.29*Exp[-z/(7500.)]*Sqrt[xd^2 + zd^2]*xd*cd* 
      xarea)/(2 mass); 

• The cd_ (drag coefficient is used in the functions so that 
Manipulate[] can be used to generate dynamic plots. 

• The Lec19_NDsolve.nb note book implements this solution 
 

http://geoweb.mit.edu/~tah/12.010/Lec19_NDsolve.nb
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Additional Mathematica feature 
• In this problem we want to hit a specific target distance 

and to do that we use FIndRoot 
• The solution on the earlier slides provides values of x 

and z as a function of time; we now want to find the 
time when z is zero again (any height could be 
chosen)  and then we change the initial velocity so that 
x is a specific value at this value of z. 

• This is done with: 
zerot  = t /. FindRoot[hz[t] == 0 , {t, 20, 500}]; 
derr = targdist - First[hx[zerot]]; 
(First[] is needed here because hx[t] returns a list 
(which in this case contains just 1 item). 



Matlab setup 
• The Matlab solution to this problem is a little different because 

Matlab solvers only solve first-order differential equations, so we 
need to repose a 2nd order equation as two first order one. 
 
 
 
 
 
 
 
With Matlab we solve for y(t) and x(t).  In our case these are 
vector quantities. 
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Matlab setup 
• The ODE solvers in Matlab take a vector containing the variables 

to be solved, the initial values of the vector contain the initial 
values (boundary conditions at time zero). We call this vector y.  

• For the ballistic problem with 2 2nd order equations and hence 4 
1st order equations, y is 4 elements long. 

• An m-file function is supplied that given the the vector y, returns 
dy/dt.  Other parameters are often needed for this calculation 
such gravity, drag coefficients, area etc and these can be passed 
into to m-file or by declared global (easiest approach in general). 

• In our case the vector y is: y(1) - x-position; y(2) - z-position, y(3) - 
x velocity  and y(4) - z velocity;  
dy/dy called dy is dy(1) - x velocity (y(3)); dy(2) - z velocity (y(4)); 
dy(3) - x acceleration (drag) and dy(4) - z acceleration (gravity 
and drag). 
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ODE solvers 
• In addition to the acceleration m-file, and m-file can also be 

specified that allows events to be detected. 
• In our case here that event is the missile hitting the ground again 

(ie., the height becoming zero). 
 

function 

[value,isterminal,direction]=Lec19_hit(t,y) 
% Locate the time when height passes through zero 

% in a decreasing direction 
% and stop integration.   
value = y(2);     % detect height = 0 
isterminal = 1;   % stop the integration 
direction = -1;   % negative direction 
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ODE Solver 
• The name of the event function and other 

characteristics of the ODE solution are set with the 
odeset command 

• These options allow the tolerances on the solution 
accuracy to be set.  These can be set as relative or 
absolute accuracy. 

• There are a number of ODE solvers that use different 
order of integration and some are posed to solve stiff 
problems (i.e., problems where solution vary slowly but 
can have nearby solutions that vary rapidly.  These 
problems need to careful with the size of step they 
take to avoid unstable results and to run rapidly. 
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ODE Solvers  
• Use of ODE Solvers in Matlab (demonstrated in class) 
• Vector y is 2-d position and velocity (1:4). 
y0 = [0.0; 0.0; vx; vz]; 

[t,y,te,ye,ie] = ode23(@Lec19_bacc,[0:1:tmax],y0,options); 

– The Lec19_bacc routine computes accelerations. dy/dt is returned so that 
dy[1]=d(pos)/dt=y[3]; dy[2]=y[4]; and dy[3] and dy[4] are new accelerations  

function dy = Lec19_bacc(t, y) 

% Lec19_bacc: Computes ballistic accelerations 

• Options sets ability to detect event such as hitting ground 
options = odeset('AbsTol',[terr 1 1 1],'Events',’Lec19_hit'); 

function [value,isterminal,direction] = Lec19_hit(t,y) 

Value returns the height. 

– Look through Matlab help and use demo program 

– Solutions in Lec19_ODE.m, Lec19_bacc.m, Lec19_hit.m and 
Lec19_animate.m 
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Example solutions  

 

Here Cd is 

changed and 

effects on 

trajectory can 

be seen 
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Summary 
• Examined solution of differential equations using 

NDsolve and Findroots in Mathematica  
• Using ODExx in Matlab and the options that allow 

events to be dected. 
• Example of multiple events is given with ballode 

command in Matlab 
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