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1 Origin of biogeochemical cycles

Reference: Morowitz [1]

1.1 The carbon cycle

1.1.1 The biological cycle

The carbon cycle may be viewed in various ways. In its most familiar mani-
festation, one has the reaction

CO2 + H2O 
 CH2O + O2

Photosynthesis goes to the right, respiration to the left. CH2O is shorthand
for organic carbon, i.e., a carbohydrate “fixed” by photosynthesis from CO2.
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Roughly half this reaction takes place on land, the other half at sea. But 
nearly all of the CO2 in the atmosphere and oceans is in the oceans. 

This is the essence of the biological carbon cycle, which is nearly a closed 
system: about 99.9% of the carbon fixed by photosynthesis returns back to 
the oceans and atmosphere via respiration. 

1.1.2 The rock cycle 

The other 0.1% of the organic carbon which is fixed is eventually buried. 
Some (inorganic) CO2 is also buried, as carbonate. A rough picture looks 
like this: 

photosynthesis 

respiration 
CO2+H2O CH2O+O2 

atmospheric CO2 

oceanic C 

organic carbon
burial 

volcanos 

weathering 

inorganic carbon
burial (carbonate) 

If CO2 in the atmosphere and oceans is not to be depleted, there must be 
a source to counter the sink of burial. The source is volcanism (and related 
metamorphic and hydrothermal processes). 

Weathering processes (i.e., erosion) provide a means, via the so-called “Urey 
reactions,” of extracting CO2 from the atmosphere and transporting some of 
it to the oceans. Then, assuming no other changes, it is eventually buried 
again. This is the geochemical, or “rock” cycle. 

Schematically, CO2 concentrations evolve as 

d[CO2] r volcanism − (weathering + burial) 
dt 
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If there were no volcanic source, weathering and burial would deplete the
CO2 in the oceans and atmosphere in about 105–106 years. So it turns out
that we owe our existence to mantle convection and plate tectonics!

The field of (bio)geochemical cycles is devoted to the study of all elemental
cycles, not just that of carbon. Prominent among them are the oxygen,
nitrogen, sulfur, and phosphorous cycles. In detail they differ from the carbon
cycle but the basic theme—cycling through organisms at fast time scales and
rocks at slow time scales—remains the same.

The various cycles are not independent: they are instead coupled into a kind
of “supercycle,” with prominent subcycles, like that of carbon, oxygen, and
sulfur, identifiable within the supercycle.

1.2 Energy flow

The existence of biogeochemical cycles such as the carbon cycle raises a nat-
ural question: Why do cycles exist?

Morowitz proposes an answer: the flow of energy through a chemically react-
ing system requires the existence of chemical cycles, i.e.,

cycles
energy sinkenergy source

The cycles occur in any intermediate system. The Earth is one such exam-
ple: the energy source is (dominantly) solar radiation; the energy sink is outer
space.

The “energy flow” may be generalized to any flow from a higher to lower
potential (e.g., rock movement, or chemical diffusion).

Morowitz’s theory is essentially an application of fundamental principles
in irreversible thermodynamics as they apply to non-equilibrium stationary
states.
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1.3 Two-reservoir model 

We start with a very simple model and proceed to somewhat less simple (but 
still highly idealized) systems. Consider a gas placed in a box between two 
reservoirs, one side of which is held at temperature T1 and the other at T2: 

T1 n1 
n2 T2 

X 

The gas has average number density Ψ. 

The barrier is at the midpoint and contains pores that are small compared 
to the mean-free-path of the particles so that the residence times within the 
reservoirs are much longer than the time it takes to traverse the barrier. 

In steady state, there is a flow of heat from the hotter to the colder side. We 
assume each side is perfectly mixed and in equilibrium with their respective 
reservoirs. Then the steady state is characterized by 

n1, n2 = number density of atoms on sides 1 and 2 

T1, T2 = temperature on sides 1 and 2 

In steady state the mass fluxes in each direction must be equal. These fluxes 
are proportional to √ 

(mv 2/2) 1/2 ∝ T , 

leading to Prigogine’s solution 

n1 T1 = n2 T2. 

As expected, the density is inversely related to temperature. The sum of the 
densities is constrained by mass conservation: 

n1 + n2 = 2Ψ  

We thus have the (obvious) result that the flow of heat through the system 
results in a concentration difference. 
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Now imagine that the system were entirely isolated by adiabatic (insulating)
walls. Then the system would come to an equilibrium state characterized by

n1 = n2.

Consequently the non-equilibrium state is more ordered (i.e., it has lower
entropy). The order is maintained by the flow of energy through the system.

1.4 Reactive species

We now replace the perfect gas by two chemical species A and B which react
as:

k1(T )
A GGGGGGGGGBFGGGGGGGGG B

k2(T )

The system is therefore characterized by concentrations

[A1], [B1], [A2], [B2]

The evolution of the system follows the kinetic equations of the form

d[A1]
= reactions B1AA1

dt
− reactions A1AB1

+ flow of A2 to box 1

− flow of A1 from box 1.

The flow rate through the barrier is proportional to the thermal velocity of
the molecules. Take the transfer rates to be

ν12 ∝
√
T1 flow 1 → 2

ν21 ∝
√
T2 flow 2 → 1

The explicit equations for [A1] and [B1] are then

d[A1]
= k2(T1)[B1] k1(T1)[A1] + ν21[A2] ν12[A1] (1)

dt
− −

d[B1]
= −k2(T1)[B1] + k1(T1)[A1]− ν12[B1] + ν21[B2] (2)

dt
along with similar equations for [A2] and [B2].

We proceed to the following points:
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1.4.1 No equilibrium solution

In the absence of flow, thermal equilibrium would predict

k1(T1)[A1] = k2(T1)[B1]

or
[B1] k1(T1)

=
[A1]

K
k2(T1)

≡ (T1)

where K(T1) is the equilibrium constant of the reaction.

A similar result must hold for box 2:

[B2]

[A2]
=
k1(T2)

k )
≡ K(T2)

2(T2

But

• A1 and B1 each flow from side 1 to 2 at rate ν12.

• A2 and B2 each flow from side 2 to 1 at rate ν21.

If there were no thermal gradient (i.e., if T1 = T2), the steady-state ratios
[B]/[A] would be equal on each side:

[B1] [B2]
=

[A1]
.

[A2]

But these ratios cannot be equal in general, because T1 6= T2 and, in general,

K(T1) 6= K(T2).

Thus there is no thermal equilbrium, and non-equilibrium concentrations are
expected.

1.4.2 Cycles

We now show the existence of cycles. Adding (1) and (2) in steady state, we
obtain

ν21

(
[A2] + [B2]

)
= ν12

(
[A1] + [B1]
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As expected, there is

no net flow of
(

[A] + [B]
)

across the boundary.

Consequently any flow of A must be balanced by an equal and opposite flow
of B.

Because there is no thermal equilibrium, we have

k1(T1)[A1]− k2(T1)[B1] 6= 0

From equation (1), we have that in steady state, the quantity above must
balance the flow of A:

k1(T1)[A1]− k2(T1)[B1] = ν21[A2]− ν12[A1]

But the RHS above must also be non-zero, requiring

ν21[A2] 6= ν12[A1]

Consequently

• There must be a finite net flow of A in one direction.

• This flow must be balanced by an equal and opposite flow of B.

We therefore find a cycle. We conclude that

• The steady state is out of equilibrium.

• Energy flow leads to internal organization.

• The organization includes a cyclic flow of material.

1.5 Cycles and the breaking of detailed balance

Consider a vat in contact with a isothermal reservoir, with the chemical
reactions

k1 k3 k5
A GGGGGBB GGGGGB GGFGGGGG FGGGGG C GGGBFGGGGG A

k2 k4 k6
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The equilibrium concentrations satisfy

k1[A] = k2[B]

k3[B] = k4[C]

k5[C] = k6[A]

The specific equilibrium concentrations [A], [B], [C] follow from the condition
that mass is conserved:

[A] + [B] + [C] = const.

Equilibrium follows from microscopic reversibility: each process must have
the same probability as the reverse process.

Thus there must be no flow (or cycle) around the system in equilibrium.

Note, however, that we could maintain a steady state but still have a net flow
F around the system, such that

k1[A]− k2[B] = k3[B]− k4[C] = k5[C]− k6[A] = F .

This is one example of a cycle. We proceed to provide a general condition
for such a cycle to exist.

Consider a (canonical ensemble of) system(s) at equilibrium. Define

fi = Prob(system is in state i )

tij = Prob(system in state i will change to state j in unit time)

In equilibrium we have detailed balance:

fitij = fjtji

Assume that the system is in contact with an isothermal reservoir, and irra-
diate the system with a constant flux of electromagnetic radiation, such that
there is net absorption of radiation.

The steady state will be characterized by a flow of heat to the reservoir:

radiation→ system→ heat to reservoir.
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The steady state will be characterized by new occupation numbers and tran-
sition probabilities

fi
′ and t′ij.

If detailed balance were to hold, for every transition involving absorption of
radiation, a reverse transition would exist in which the system would radiate
a photon.

But there would then be no net absorption of energy and flow of heat. Con-
sequently detailed balance does not hold in general for the steady state:

fi
′t′ij 6= fj

′t′ji (3)

In the steady state the occupation numbers are time independent. Therefore
“incoming” transitions balance “outgoing” transitions:

dfi
′

= 0 = )
dt

∑(
Prob(j → i

j

− Prob(i→ j)

)
(4)

=
∑(

fj
′t′ji

j

− fi′t′ij
)

(5)

For at least for one fi
′, fj
′ pair, the term above in parentheses must be non-

zero due to the relation (3). On the other hand, the requirement that the
sum vanish means that other terms in the sum must also be non-zero.

We therefore identify cycles: For at least some states i, j, the paths from i to
j and from j to i are not equal; i.e., states leave by one path and return by
another.

We thus obtain Morowitz’s cycling theorem:

In steady state systems, the flow of energy through the system from
a source to a sink will lead to at least one cycle in the system.

1.6 Summary

These general considerations refer to molecular organization, but we expect
that they should apply to ecosystems at all scales, and perhaps even the
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evolution of life. In summary:

• The Earth’s surface receives energy from a source (the Sun) and gives it
up to a sink (outer space).

• Energy flow causes a cyclic flow of matter; and a cyclic flow of matter
requires an energy flow.

• Energy flow led to life and biogeochemical cycles. “Thus the problem
of the origin of life and the development of the global ecosystem merge
into one and the same problem” (Morowitz, p. 120).
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