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1 Disordered Kinetics

1.1 Relaxation in the carbon cycle

Recall again the carbon cycle:

CO2 + H2O
 CH2O + O2

The back reaction—respiration—is a process of degradation or decay.

That is, microbes feed on organic detritus, slowly returning it to the atmo-
sphere as CO2.

A good example is the fate of leaves after they fall off trees. Another is the
decay of marine detritus as it falls to the bottom of the sea, and degrades in
sediments.

An example of another kind of decay is the weathering or dissolution of silicate
minerals, here represented schematically as CaSiO3:

CaSiO3 + CO2 
 CaCO3 + SiO2.

Left-to-right, such reactions schematically represent the uptake of CO2 from
the atmosphere and its transformation to dissolved HCO�3 during weathering
of silicate rocks, and its eventual precipitation and burial in the oceans as
carbonate minerals.

We say that processes of decay and weathering represent relaxation, in that
some quantity slowly diminishes, either until it vanishes or until some irre-
ducible fraction is obtained.

1.2 Relaxation rate constants

What sets the rates of relaxation?
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1.2.1 Arrhenius kinetics

Classical equilibrium chemical kinetics predicts reaction rate constants k in
terms of activation energies Ea.

The activation energy is a potential barrier that is surmounted by a sufficient
thermal fluctuation.

Define
1

β =
kBT

where T is temperature and kB is Boltzmann’s constant.

Arrhenius kinetics predicts the rate constant

k = ωe�βEa,

where ω is called is the “attempt frequency” or “frequency factor.”

In the classical interpretation of Arrhenius kinetics, the fraction of reactant
molecules with a kinetic energy greater than Ea is given by the Boltzmann
factor exp(�βEa).

In this essentially phenomenological characterization, the temperature defines
the characteristic size of a thermal fluctuation, Ea is the energy barrier that
must be overcome by the fluctuation, and ω is the frequency at which the
fluctuations lead to reaction.

1.2.2 First order decay

Consider the reaction
k

AGGGGGAProducts,

signifying the disappearance or extinction of A with rate constant k.

The meaning of the rate constant k is that, in a small interval of time ∆t�
k�1,

P (an arbitrary molecule reacts) ' k∆t.
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This probability applies to each molecule independently. 

Thus if we have N molecules of A at time t, after a small time Δt, we have  

N(t +Δt) =  N(t) − kNΔt 

and therefore 
N(t +Δt) − N(t) 

= −kN. 
Δt 

Letting Δt → dt, we have the  first-order decay 

dN 
= −kN 

dt 
with solution 

N(t) =  N(0)e −kt . 

1.2.3 Aging 

In investigations of naturally occuring chemical decays within the carbon 
cycle, it is often difficult to measure k directly. Instead one measures, say, a 
concentration c per unit volume V such as 

c = N/V, 

or equivalently, a weight fraction, and then infers k from 

d log  c 1 dc 
k = − = − ,

dt c dt 
which is easily obtained from the slope of log c(t) on a semilog plot. 

Such data may be obtained, e.g., from the decay of leaves, the degradation 
of organic matter in mud or sediment, or the dissolution of minerals. 

We then meet a very interesting problem: plots of log c(t) vs  t are often 
sublinear, like 
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Such a relation is broadly consistent with the sublinear decay of log c(t).
However it leaves open the interpretation of n.

If instead we restrict ourselves to first-order kinetics, we note that the concave
upward appearance of log c(t) suggests a kind of effective rate constant keff

that decreases with time like

d log c
keff(t) = − . (1)

dt

Such a relation implies that the effective first-order rate constant depends on
the age of the material that is decaying.

Much data has been obtained for keff(t) [1, 2]:
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One way of interpreting such a plot is to suggest that the reaction kinetics
are not first order, but instead of order n such that

dc
= n

t
−kncn,

d
≥ 1

where kn is a different rate constant and the power n suggests something like
the need for an n-body collision for the extinction of a particular molecule.

Separating variables above, we obtain

c−ndc = −kndt ⇒ c ∝
1

t 1−n , n > 1,

http://www.sciencedirect.com
http://www.sciencedirect.com


These data are for the decay of organic matter (left) and mineral dissolution.
Both are roughly consistent with the power law

k = 0.2× t−1
eff

at time scales that span orders of magnitude, from days to millions of years.
At least at first glance, it seems entirely remarkable that both problems
quantitatively yield the same aging effect.

If we were to again assume nth-order kinetics, we would find

1 dc 1
keff(t) = = t−1 n 6.

c dt n
× ⇒ '

− 1

We know of no way to justify the ubiquity of 6th-order kinetics.

Thus we must turn to other interpretations of the aging effect.

1.2.4 Rationalizing the aging effect

Broadly speaking, the causes are thought to be either intrinsic or extrinsic.

Intrinsic causes

• Microbial degradation of organic matter. It is commonly assumed that
some organic compounds are metabolized slowly while others are me-
tabolized quickly.

In the jargon, the fast compounds are called labile, while the others are
called refractory or recalcitrant.

In this view, the slow decay of keff(t) is interpreted as a labile-to-refractory
cascade.

• Mineral dissolution. A similar rationale is invoked: due to local impu-
rities or defects, some bits of mineral surface area dissolve faster than
others.
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Extrinsic causes Extrinsic causes are environmental.

The relevant environment is microsopic: at the scale of the typical bug’s
universe (which has a radius of about 10 µm), or a pore in a sedimentary
rock (a few µm’s again).

That is, the material undergoing decay can be somehow inaccessible:

� Microbial degradation. Association of organic matter with high-surface
area clay-sized minerals may afford some protection from enzymatic hy-
drolysis, such that the least protected organic matter degrades first.

� Mineral dissolution. Tight pores or other effects of geometric confine-
ment may make some minerals harder to access by sufficiently unsatu-
rated fluids, providing a mechanism for a fast-to-slow cascade.

It seems obvious that all these factors—intrinic and extrinsic—play some role
in the aging effect.

However it is hardly obvious why two entirely different systems—organic
matter decay and mineral dissolution—should behave the same way, quanti-
tatively.

Thus we seek a more fundamental perspective.

1.3 Disordered kinetics

Another perspective views the aging process as a consequence of disordered
kinetics [3, 4].

In disordered kinetics, rate constants are not constant. They are instead rate
coefficients that may vary.

There are two kinds of variation: static and dynamic.

� Static disorder. Fluctuations are “frozen” and last forever. The fluctu-
ations typically manifest themselves as random initial conditions. An
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example would be the distribution of “lability” discussed above.

• Dynamic disorder. The environment changes as the reaction progresses,
so that rate coefficients are random in time, due, e.g., to a changing
climate.

Of course, any chemical system exhibits fluctuations at some microscopic
scale due to thermal noise.

But in the usual thermodynamic or continuum limit, the relative mean-square
fluctuation of, say, the num〈ber

Ñ 2
V

NV

〉NV of molecules in a volume V scales like

→ 0 as V
〈 〉2

→∞.

˜where NV = NV − 〈NV 〉. Thus we can ignore such thermal fluctuations in
macroscopic systems.

We instead consider the qualitatively different case of relative fluctuations
that do not vanish with increasing system size. These are called intermittent.

Consider again our first-order decay. In the absence of any intermittent
fluctuations, we have

c(t)
ċ = −kc ⇒ = e−kt.

c(0)

If instead we have fluctuations, ċ must be integrated over all possible random
trajectories of k = k(t), which yields

〈c(t)〉
=

〈
exp

(
−
∫ t

k(t′)dt′
c(0) 0

)〉
.

Note that
〈c(t)〉

= e−〈k〉t
c(0)

This situation applies equally to dynamical disorder, where k = k(t) is some
random function of time, and static disorder, where k is just a single random
rate coeffient.

We conclude that 〈c(t)〉 potentially includes rich behavior that goes well
beyond naive averaging of rate coefficients.
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1.4 Random rate models

We now specialize to the case of static disorder, but first consider the condi-
tions under which it may be assumed.

1.4.1 Preservation of static disorder

The simplest case of static disorder is a system with two components A1 and
A2, such that

k1 k2
A1GGGGGGAP and A2GGGGGGAP

Setting
A1 = [A1], A2 = [A2], and c = A1 + A2

we have
c(t) = A1(0)e−k1t + A (0)e−k2t2

In geochemistry, such models of superposed exponential decays are called
“multi-G” models [5].

In some situations it is more realistic to imagine that A1 and A2 interact. For
example,

ν k1 k2
A1 GGGGBFGGGG A2, A1GGGGGGAP, A2GGGGGGAP

ν

In terms of differential equations, we have

Ȧ1 = −(k1 + ν)A1 + νA2

Ȧ2 = −(k2 + ν)A2 + νA1

As ν → 0, we recover the “biexponential” model above.

When mixing is fast relative to the decay reactions, i.e., when ν � k1 and
ν � k2, A1 ' A2 at long times t � ν−1 and the aggregate system A1 + A2

behaves as if there were just a single (average) rate coefficient (k1 + k2)/2:

1
c(t) = c(0) exp

[
−

2
(k1 + k2)t

]
.
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We conclude that non-exponential decays occur for static disorder only when
interactions among the decaying species are slow compared to the “intrinsic”
decay rates.

1.4.2 Continuous superposition

A more general approach to static disorder without mixing follows from the
assumption of a continuous distribution of rates.

Define

ck(k, t)dk = concentration of reactants with rate coefficient

between k and k + dk at time t.

Assuming first-order kinetics,

d
ck(k)dk = k
t

−kc (k)dk,
d

and therefore
ck(k, t)dk = ck(k, 0)e−ktdk.

The total concentration evolves as
∞

c(t) =

∫
ck(k, t)dk

0

=

∫ ∞
ck(k, 0)e−ktdk.

0

Forming the probability density

ck(k, 0)
p(k) =

w

∫∞
ck(k, 0)dk0

e obtain the normalized decay

c(t) ∞
=

∫
p(k)e−ktdk. (2)

c(0) 0

We call this the random rate model [6]. In geochemistry, it is called the reac-
tive continuum model [7]. Mathematically, it represents the Laplace transform
of p(k).

10



Note that the probability

p(k)dk = initial fraction of material decaying at rates between k and k + dk.

As an example, suppose [7]

1
p(k) = kα�1e�ak, α > 0

Γ(α)

where Γ(�) is the gamma function and a is a parameter. Insertion into the
random rate model then yields

c(t)
= (a+ t)�α.

c(0)

Thus we see, for k � a�1, another way of interpreting a power law decay of
c(t): instead of inferring the order n of the kinetics from α, as in Section 1.2.3,
we may merely view it as deriving from a power-law decay of the random rate
distribution p(k).

It is also of interest to consider the time dependent effective relaxation rate (1):

d log c
keff(t) = �

dt
=

α

a+ t

Comparing with the data shown in Section 1.2.3, we see good agreement at
long times if α ' 0.2.

1.5 Random channel model

We now consider the problem of parallel relaxation from an entirely different
point of view [8].

Assume that relaxation takes place locally, on a microscopic scale.

Relaxation results from passage through a “channel.” We conceive of a chan-
nel as a sequence of events necessary for the decay of a microscopic unit of
material.

Channels are labeled by the index j = 1, 2, . . ., and are characterized by

λj = relaxation rate in jth channel.
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1.5.1 Fixed rates

We divide a macroscopic body into M weakly interacting, similarly prepared,
subsystems labeled by the index s.

The subsystems differ from each other only in that they have different sets
of open and closed channels.

We define the Boolean variable{
1 if the jth channel is open in subsystem s

Ijs =
0 else.

The jth channel is

• open with probability Pj; and

• closed with probability 1− Pj.

Define
Qs = set of open channels in subsystem s.

When a channel is closed, it does not contribute to the relaxation. Then the
total rate Ws at which a subsystem s relaxes is

Ws =
j

∑
λj.

∈Qs

Relaxation of the concentration cs(t) in subsystem s then follows

cs(t)
= exp

cs(0)

 

The normalized concentration c(t) in

−
j

∑
λjt

∈Qs

 .

the entire macroscopic body is the av-
erage over the M subsystems:

1
c(t) =

c

M

∑
s(t)

s

.
cs(0)
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Then the relaxation c(t) of the entire macroscopic body—i.e., relaxation av-
eraged over the ensemble of subsystems—is a a sum over the subsystems:

1
c(t) = exp

M

∑
s

−
j

∑
λjt

∈Qs

 .

The entire system therefore relaxes at a distribution of rates given by Ws.

We rewrite the sums in terms of the Boolean variable Ijs:

1
c(t) = exp

M

∑
s

(
−
∑

λjIjst
j

)
For large M , the sum over s is equivalent to an ensemble average over the
subsystems s:

c(t) =

〈
exp

(
− λjt

j

)〉
s

Since the rates implied by the sum over j

∑
vary from subsystem to subsystem,

we see that we have a discrete representation of the random rate model.
However we now have access to an alternative representation.

First, we convert the sum to a product:

c(t) =

〈∏
e−λjt

j

〉
s

Assuming each channel is independent of the others, the average of the prod-
uct is equal to a product of averages:

c(t) =
∏〈

e−λjt

j

〉
(3)

s

We next address the average over s, bringing back the index variable Ijs for
clarity:〈

e−λjt
〉

= Prob(channel j closed)
s

· e0 + Prob(channel j open) · e−λjt

1
= M

M

[(
−
∑

Ijs
s

)
+
∑

Ijse
−λjt

s

]
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Using the definition of Pj we thus have, for large M ,〈
e−λjt

〉
= (1− P λjt

j) + Pje
−

s

Substituting this expression into equation (3), we find that the system relaxes
according to

c(t) =
∏[

(1− P ) + P λjt
j je

−

j

]
. (4)

1.5.2 Fluctuating rates

The preceding interpretation assumes channels remain open or closed forever.

We may instead allow the channels to open and close randomly, in response
to, say, environmental fluctuations.

We can then define the fluctuating variable{
0, channel j closed at time t

λ̃j(t) =
λj, channel j open.

Then
t
˜c(t) =

〈
exp

[
−
∑∫

λj(t
′)dt′ .

0j

]〉
If the probabilities per unit time of opening and closing are constant, we have
a random telegraph process [9].

The probability Pj then represents the fraction of time the jth channel is
open.

When the correlation time of opening and closing of the jth channel is long
compared to λ−1

j , open channels are genuinely “active” and we recover equa-
tion (4) assuming independence and the new interpretation of Pj.
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1.5.3 Decay function

We rewrite the product (4) as:∏[
(1− P λ

j) + Pje
− jt
]

= exp

[∑
log
(
1− P + t

j Pje
−λj

j j

]
We assume that Pj � 1, corresponding in the fluctuating case

)
to channels

being almost always closed. Then

log
(
1− P λjt λjt

j + Pje
− ' −Pj(1− e− ).

The decay function (4) then becomes

)

c(t) = exp

[
−
∑

Pj(1
j

− e−λjt)

]
.

To simplify further, define the density of rates

ρ(λ) =
∑

Pjδ(λ− λj).
j

Then

c(t) = exp

[
−
∫ ∞

ρ(λ)(1− e−λt)dλ
0

]
, (5)

called the random channel model [6, 8].

1.6 Relation between random rates and random channels

At first glance, the random rate model (2) looks entirely different from the
random channel model (5).

Moreover, p(k) and ρ(λ) differ:

• ρ(λ)dλ is the average number of (open) channels with an individual rate
between λ and λ+ dλ.

• p(k)dk is the overall probability that the total rate of relaxation is be-
tween k and k + dk.
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Note also that p(k) is a normalized probability density, while ρ(λ) is an
unnormalized number density.

To appreciate the difference between the two, recall from Section 1.4.2 that,
in the context of the random rate model,

1
p(k) = kα−1e−ak ⇒ c(t) = (a+ t)−α.

Γ(α)

where in the second relation we have suppressed the normalizing factor c(0).
What ρ(λ) is associated with c(t)?

Taking the logarithm and differentiating both sides of the random channel
model, we obtain

d log c−
∞

= λρ
t

∫
(λ)e−λtdλ.

d 0

The LHS is identical to our previous expression (1) for keff(t). The RHS is
the Laplace transform of λρ(λ). Therefore

1
ρ(λ) = (

λ
L−1[keff t)]. (6)

For the above example of p(k), we found keff = α/(a+ t) in Section 1.4.2. In
that case,

1
ρ(λ) =

α−
λ
L 1

(
a+ t

)
=
α
e−aλ.

λ

We find that p(k) and ρ(λ) are equal only if α = 1.

We can obtain a general relation between p(k) and ρ(λ) by noting that

1
keff(t) =

−
c

dc

dt
=

∫∞
0 kp(k)e−ktdk

where

∫∞
p(k)e0

−ktdk

we have merely substituted the random rate model (2) for c. Substi-
tution into (6) then yields

1
ρ(λ) =

λ
L−1

[∫∞
0 kp(k)e−ktdk

]
where we have taken λ conjugate to t

∫ ,∞
p(k)e ktdk0

−

in the inverse Laplace transform.
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From these observations we see that each model is essentially a reinterpreta-
tion of the other.

To better understand the connection, we require the probability distribution

P (N1, N2, . . .) = P (N1 channels of type 1, N2 channels of type 2, . . .),

which in an appropriate limit is Poissonian [6], expressed in terms of the
averages 〈N1〉, 〈N2〉, etc.

In this interpretation, each channel has a very small probability of being
open. By defining the total rate of relaxation

k =
∑

Njλj,
j

we find the probability p(k)dk according to

p(k)dk =
∑∑

. . . P (N1, N2, . . .) δ
N N

−
2

(
k

1

∑
Njλj

j

)
dk, (7)

showing that the total “macroscopic” rate k is a weighted average of the
“microscopic” rates λj.

Now recall that our overall goal is to evaluate the average decay function

〈c〉 = e−kt .

We now see two interpretations of the

〈
average

〉
〈·〉:

• 〈·〉 is an average over all possible rates k randomly drawn from p(k).

• 〈·〉 is an average over all possible rates k randomly drawn from p(k) as
computed by (7).

The two models are thus physically equivalent.

The differences are a matter of formal expression and interpretation:

• Random channels:
scopic contributions

〈
e−kt

〉
derives from fluctuations of individual micro-

to the decay process.
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• Random rates:
〈
e−kt

〉
derives from fluctuations of the total macroscopic

decay rate.

In the context of the present discussion, the utility of each model will be
determined by the extent to which it provides an understanding of the mech-
anisms that produce the observed aging effects discussed in Section 1.2.3.

1.7 Universal random rate distribution

1.7.1 Inverse Laplace transform

To gain an understanding of how a particular decay process works, one would
like to know either the rate distribution p(k) or ρ(λ).

For practical purposes, p(k) is often a more sensible quantity to work with. In
principal, we may obtain an estimate of it from the inverse Laplace transform
of c:

p(k) = L−1 [c(t)] .

The inverse is exact, but the problem is unfortunately ill posed, meaning that
small amounts of noise in c(t) can lead to large differences in p(k). Conversely,
signficantly different rate distributions p(k) can produce effectively the same
c(t).

Such inverse problems may be solved, however, by the method of regulariza-
tion. The idea is to narrow the space of possible solutions to those for which
p(k) is “smooth,” i.e., those for which∣∣∣∣∣∣∣dp∣ ∣2

dk

∣∣∣
is small, while simultaneously minimizing

∣∣∣∣
the squared error

||ĉ− c||2

where ĉ is the decay function predicted by the smooth estimate of p(k).

One also wants to constrain the inverse problem so that p(k)dk = 1.

18
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There are a variety of ways to perform such a constrained regularized inver-
sion, but we do not discuss them here.

Instead we note that, in a surprisingly wide range of circumstances, p(k)
turns out to be the lognormal distribution [10]

1
p(k) =

k
p

2πσ2
exp

[
�(ln k � µ)2

,
2σ2

]
which has parameters µ and σ.

Results for plant-matter decay throughout North America are shown here [10]:

1.7.2 Lognormal distribution

To see why p(k) is often lognormal, we examine some of its properties.

First, consider the new random variable

x = ln k.
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The pdf ρ(x) is given by

dk
ρ(x) = p[k(x)]

dx

=
1

ex
√ (

exp
2πσ2

[
− x− µ)2

2σ2

]
ex

=
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]

We therefore see that the random variable x = ln k has a Gaussian distribu-
tion with mean

µ = 〈ln k〉
and variance

σ2 = Var(ln k)

To see why the lognormal is ubiquitous, we consider the following model of
decay [11].

Suppose that degradation of a particular organic compound (i.e., a “micro-
scopic” unit) occurs only after N distinct local conditions have been satisfied.

For the problem of decaying organic matter, examples of such conditions
include the

• water content

• pH

• nutrient concentration

• microbial community

• oxidizing agent

• concentration and type of organic matter, etc.

If any condition is not satisfied, then degradation of the compound fails to
occur.
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Let pi be the probability that the ith condition in such a list is satisfied.

Assuming that the pi’s are independent, the probability P that a degradation
“event” occurs in a given time is

P = p1p2 . . . pN .

P is the probability per unit time that an individual micro-unit vanishes,
given a particular set of probabilities pi.

Another micro-unit may, however, be associated with a different set of pi’s,
leading, then, to a different P . Thus the distribution of P would seem to
depend on the particular distribution of each pi.

However it does not. To see why, write

lnP = ln p1 + ln p2 + . . .+ ln pN .

So long as the random variables ln pi are well behaved (i.e., their first and
second moments exist), the central limit theorem tells us that, for N large,

lnP is Gaussian, with variance σ2 =
∑

var(ln pi).
i

Identifying the rate constant k with the probability P per unit time of degra-
dation, we thus find that k is lognormal.

Consequently the universality of the lognormal rate distribution derives from
the central limit theorem.

Specifically, while additive processes produce Gaussian distributions, multi-
plicative processes produce lognormals.

Montroll and Shlesinger [11] distinguish the two cases with popular sayings.
For the additive Gaussian case:

foot bone ’tached to the leg bone, leg bone ’tached to the knee bone,
knee bone ’tached to the thigh bone, thigh bone ’tached to the hip
bone. . ...
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Then with some variation in the length of each type of bone in a large pop-
ulation, heights of individuals are Gaussian. An entertaining version of this
concept can be found by viewing this video.

On the other hand, lognormal distributions characterize processes whose suc-
cessful execution follows Franklin’s proverb:

for the want of a nail the shoe was lost, for the want of a shoe the
horse was lost, for the want of a horse the rider was lost. . ..

A musical version is here.

1.7.3 Relation to keff(t)

Recall that the observational data suggest an aging of the effective rate con-
stant such that

keff(t) ' 0.2× t−1.

In principle, we should expect that this result would follow from

1
keff(t) =

−
c

dc

dt
=

∫∞
0 kΛ(k;µ, σ)e−ktdk

where Λ(k;µ, σ) is the lognormal pdf

∫∞
Λ(k;µ, σ)e ktdk0

−

1
Λ(k;µ, σ) =

k
√ (ln

exp
2πσ2

[
− k − µ)2

2σ2

]
We can estimate the required integrals when the variance σ2 is large. First,
change the variable of the lognormal to κ = k/eµ (i.e., express k in units of
its median eµ):

1
Λκ(κ) =

κ
√ (ln

exp
2πσ2

[
− κ)2

.
2σ2

Taking logs on both sides,

]

(lnκ)2

ln Λκ(κ) = − lnκ−
2σ2

− ln(2πσ2)
.

2
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When the second term is much smaller than the first, i.e., when

| lnκ| � 2σ2

we have
1

Λκ(κ) ∝
κ
⇒ Λ(k) ∝ 1

k
showing that a lognormal distribution is remarkably similar to a simple power
law.

For practical purposes we suppose that the power law holds between values
kmin and kmax and vanishes elsewhere.

Then our expression for keff becomes

keff(t) =

∫ kmax ekmin

−ktdk

Noting

∫ .
kmax kkmin

−1e−ktdk

that the exponential integral
∞

E1(kmint) =

∫
k−1e−ktdk

kmin

we have
1

keff(t) =
t

(
e−kmaxt − e−kmint

E1(kmaxt)− E1(kmint)

At long times t

)
� kmax

−1 we can neglect the terms involving kmax so that

1
keff(t) =

t

(
e−kmint

E1(kmint)

)
If times are not so long so that t � k−1

min, the numerator is effectively unity
and we can employ the asymptotic expansion [12]

E1(kmint) = −γ − ln kmint

where γ = 0.5772 . . . is Euler’s constant. Then

1
keff(t) ∼

t

(
1

,
−γ − ln kmint

)
k−1

max � t� k−1
min.

We see that keff(t) is not a pure power law but instead contains a logarithmic
correction.
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Empirical studies [13] suggest that−7 . ln kmint . −3. Supposing an average
value of −5 we then find

keff(t) ' 0.2× t−1

as found in the experimental data.

1.8 The elementary cycle A
 B

Consider again the carbon cycle:

photosynthesis
CO2 + H2O GGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGG CH2O + O2

respiration

Simplify it by writing
photosynthesis

A GGGGGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGGGGGB
respiration

and now take the rates as
kA

A GGGGGGBFGGGGGGB
k

where

• A→ B at a constant rate kA.

• B → A at a random rate k.

1.8.1 Equilibrium ratio

The simplest case: B → A at a deterministic rate k = kB:

kA
A GGGGGGBFGGGGGGB

kB

In terms of differential equations, we have

Ȧ = −kAA+ kBB

Ḃ = kAA− kBB
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We find the equilibrium ratio

A

B
=
kB
.

kA

Returning to the random rate k, we set

b(k)dk = fraction of B that reacts at a rate k between k and k + dk.

B is the sum of its parts:
∞
b(k)dk = B.

0

A is converted to a continuum

∫
of k-types of B:

A→ b(k)dk, 0 ≤ k ≤ ∞,

with specified probability

p(k)dk, 0 ≤ k ≤ ∞.

A and b(k) change as

∞
Ȧ = −kAA+

ḃ(k) = k p(k)A

∫
kb(k)dk.

0

A − kb(k).

In steady state,
kA

b(k) = p(k)A.
k

The equilibrium ratio
A

B
=

A

Inserting

∫ .∞
b(k)dk0

the steady solution for b(k),

A

B
=

1 1
=

kA
∫∞

k0
−1p(k)dk kA

1

〈k−1〉

Thus A/B is determined by the first negative moment k−1 of the pdf p(k).

The first negative moment of the lognormal is

〈 〉
〈
k−1
〉

=

∫ ∞
2

k−1Λ(k)dk = e−µ+σ /2.
0
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Therefore
A eµ−σ

2/2

=
B

.
kA

Note that when
σ = 0 and µ = log kB

we recover the case of the single deterministic rate,

A

B
=
kB
.

kA

Interesting phenomena result from the disordered case σ > 0. To see why,
suppose that we had wrongly assumed that B → A at the mean rate

〈k〉 =

∫ ∞
2

kΛ(k)dk = eµ+σ /2.
0

We would then make the relative error

(A/B)wrong

(A/B)true
=

〈k〉
1/ 〈k−1〉

= 〈k〉 k−1 .

Inserting the expressions for the first positiv

〈
e and

〉
negative moments of the

lognormal, we have
(A/B)wrong 2

=
(A/B)true

∣
eσ ,

lognormal

showing that the error in the equilibrium

∣
2

∣
concentration ratio increases expo-

nentially with σ when rates are lognormal.

∣

1.8.2 Turnover time and age

Reference: [14]

Define

• turnover time: the mean time taken by the reaction B → A.
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• the mean age of B: the mean time each bit of a population of B has
spent being B.

We imagine that we can probe the reservoir of B and determine the time that
each molecule has spent being B since it was “born” by the reaction A→ B.

Age distribution The age distribution is

pa(τ)dτ = fraction of B with age between τ and τ + dτ ,

where ∫ ∞
pa(τ)dτ = 1.

0

The mean age a is

a =

∫ ∞
τpa(τ)dτ.

0

Exit-time distribution The exit time is the age of a bit of B when it is
transformed to A.

The exit time distribution pε(τ) is the age distribution of B when B → A:

pε(τ)dτ = P (B → A after waiting a time between τ and τ + dτ).

pε(τ) is also called the transit time, residence time, and first-passage time
distribution. It too integrates to unity:∫ ∞

pε(τ)dτ = 1.
0

The turnover time is the mean exit time ε, where∫ ∞
ε = τpε(τ)dτ.

0

In general, pε(τ) 6= pa(τ) and a 6= ε.

Consider, e.g., human populations:
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• The mean exit time ε ' 70 yr.

• The mean age a ' 30 yr.

Biogeochemical cycles typically exhibit the opposite behavior, with differ-
ences measured in orders of magnitude.

Consider, e.g, marine organic carbon:

• The turnover time ε ' 14 yr.

• The mean age a ' 5000 yr.

Survival function and its relation to age and exit time Define the flux

J(τ) = mass with age ≤ τ that reacts from B → A per unit time.

Assume a steady input and output flux J0 to and from the B-state. Then

J0 − J(τ) = the total reactive flux with age > τ.

Divide by J0 to obtain the dimensionless survival function

J(τ)
S(τ) = 1− .

J0

S(τ) is an impulse response: it gives the fraction of B that survives a time
> τ as species B.

We can also write it in terms of the exit time distribution:

S(τ) =

∫ ∞
pε(τ

′)dτ ′

τ

Take derivatives on both sides, we find the exit time distribution

dS
pε(τ) = − .

dτ
(8)
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Consequently the turnover (mean exit) time is

ε = �
∫ 1 dS

τ
0

dτ
dτ

= �τS(τ)j10 +

∫ 1
S(τ)dτ

0

where we have integrated by parts. We find
1

ε =

∫
S(τ)dτ

0

.

The mass B at any particular moment in time contains contributions that
were “born” at all past times, weighted by the fraction that remains.

For a steady state in which J0 is the steady “input” flux to B and B0 is the
steady mass of B, the contributions to B0 are integrated over the survival
function, scaled by J0:

B0 = J0

∫ 1
S(τ)dτ.

0

Thus the turnover time is simply

ε = B0/J0 ,

which could have been inferred immediately from dimensional analysis.

In steady state, the dimensional survival flux J0 � J(τ) must be balanced by
B0pa(τ), the mass per unit time that passes the “age barrier” at t to become
just older than t:

J0 � J(τ) = B0pa(τ).

In the analogy with human populations, this statement is akin to observing
that the death rate of people older than, say, 65, must be balanced in steady
state by the rate at which the younger population crosses the 65-year age
barrier.

Dividing the expression above by J0, we obtain

S(τ) = εpa(τ).

Therefore the age distribution

1
pa(τ) = S(τ)

ε
.
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Example: single decay rate k0 In this case the survival function is

S(τ) = e−k0τ .

The exit time distribution is

dS
pε(τ) = − = k0e

−k0τ
dτ

and the turnover time is
ε = k0

−1.

The age distribution is

S(τ)
pa(τ) = = k0e

−k0τ .
ε

Thus a(τ) = ε(τ) ∝ e−τ/ε, a very special case!

Disordered rates The mean age is

1
a =

ε

∫ ∞
0

τS(τ)dτ

=
1 ∞

ε

∫
τdτ

0

∫ ∞
p(k)e−kτdk

0

1
=

ε

∫ ∞
0

dk p(k)

∫ ∞
0

dτ τe−kτ

=
1 ∞

ε

∫
dk k−2p(k)

0

and therefore

a =
1

ε

〈
k−2
〉
.

Similar calculations yield the turnover time:

ε = −
∫ ∞ dS

τ
0

dτ
dτ

=

∫ ∞
τdτ

∫ ∞
kp(k)e−kτdk∫0 0

∞ ∫ ∞
= dk kp(k) dτ τe−kτ

0 0

=

∫ ∞
dk k−1p(k).

0
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Consequently

ε =
〈
k−1
〉
.

The lognormal case When p(k) is lognormal, computation of the first and
second negative moments readily yield the turnover time

ε = e−µ+σ2/2

and the mean age
2 2

a = e−2µ+2σ /ε = e−µ+3σ /2.

Consequently
2

a = εeσ ,

showing that the ratio of the mean age to the turnover time grows exponen-
tially with σ2.

Marine organic carbon Consider again marine organic carbon:

• Primary productivity is about J0 = 50 Gt/yr.

• The oceans contains about B0 = 700 Gt organic C.

• Thus the turnover time ε = B0/J0 ' 14 yr.

• The mean age a ' 5000 yr.

If we may assume that marine respiration rates are lognormally distributed,
then

σ =
√

ln(a/ε) ' 2.4.
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