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1 Random and scale-free networks

Our study of percolation examines connectivity on a lattice.

We now proceed to an examination of aspects of connectivity without regard
to a fixed underlying geometry.

We begin with an example from the natural world: food webs.

1.1 Food webs

Food webs describe which kind of organisms eat which other kinds.

The simplest food web is a food chain.

At the base of the food chain are producers, or autotrophs.

At the next trophic level one finds consumers, or heterotrophs, which live off
of primary producers.

At the next higher trophic level are the consumers of consumers, etc.

We can group organisms into trophic species, i.e. functional groups that con-
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tain organisms that appear to eat and be eaten by the exact same species
within a food web.

Connections between trophic species then provide a simple representation of
a food web.

Here’s an example, from the East River Valley, 120 miles southwest of Denver:

www.foodwebs.org
∗

The web structure in the image is organized vertically, with node color rep-
resenting trophic level. Red nodes represent basal species, such as plants
and detritus, orange nodes represent intermediate species, and yellow nodes
represent top species or primary predators.

Note that this image has 4 trophic levels, with some species well connected
and others not so much.

In what follows, we focus on models that predict distributions of connectivity
to see if we can learn more.

∗Image produced with FoodWeb3D, written by R.J. Williams and provided by the Pacific Ecoinformatics
and Computational Ecology Lab [1].
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1.2 Random networks

Reference: Newman [2].

A perfectly plausible null hypothesis is to imagine that species represent
nodes and predator-prey relationships represent links (edges) that are chosen
randomly.

For simplicity, we ignore the directed nature of the predator-prey link, and
seek information only about the existence of the link.

We then define a random network as follows:

• We specify n nodes (i.e., species).

• We specify the probability p that any two nodes are connected.

Note that for any given node, there are

n− 1 possible connections.

Since there are n possible starting points for those n − 1 connections, there
are

n(n− 1)
possible links,

2

where the factor of 1/2 arises because we care only about the existence of the
link, not its direction (i.e, we don’t count links twice).

The expected number of links `(n) in the random graph is

`(n) = p · (number of possible links)

n(n
= p

− 1)
.

2

Define
ki = number of links to node i.

ki is called the degree of node i.
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The mean number of links attached to a node is

`(n)〈k〉 = 2
n

The factor of 2 arises because each link is attached to 2 nodes. We thus have

2pn(n〈k〉 =
− 1)

= p(n 1)
2n

− ' pn.

〈k〉 is called the mean degree of the random network.

We seek the degree probability distribution: the probability of observing a
node with degree k.

To obtain a node with degree k, we must have k “successful” connections,
each with probability p, and (n− 1− k) unsuccessful connections.

The number of possible combinations of such connections is given by the
binomial coefficient (

n− 1
k

)
(n

=
− 1)!

.
(n− 1− k)! k!

The probability Pk of observing k connections at a given node is then given
by the binomial distribution

Pk =

(
n− 1

)
pk(1− p)n−1−k.

k

The binomial distribution is a bell-shaped curve. If n→∞ and p→ 0 while
〈k〉 = np remains constant, then the binomial distribution converges to the
Poisson distribution

Pk =
〈k〉k e−〈k〉

,
k!

the mean and variance of which are both 〈k〉.

The random-network null-hypothesis thus makes a specific prediction: degree
distributions are bell-shaped, with a mean and variance of 〈k〉.

Real food web data is, however, inconsistent with this prediction [3].
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1.3 Scale-free networks

Reference: Albert and Barabási [4]

We now consider a model of a growing network. It too should be considered
a null hypothesis rather than a mechanistic model of food webs.

There are two ingredients:

• Growth. We start with m0 nodes with pre-existing connections. At each
time step we add a new node with m ≤ m0 links to pre-existing nodes.

• Preferential attachment. New links tend to attach to already well-
attached nodes. Specifically: the probability Π that a new node is
connected to node i is proportional to ki, the degree of the ith node:

ki
Π(ki) =

see

∑ .
j kj

We can easily that after t time steps, there are

t + m0 nodes and mt links.

To derive the degree distribution, we assume that ki and t are continuous.

Then the rate at which ki changes is proportional to Π(ki):

dki
= mΠ(ki).

dt

The factor of m arises by identifying the units of time with the interval
between time steps and recalling that m links are added at each time step.

We next substitute for Π(ki):

dki
dt

= m
ki

Since

∑ .
j kj

there are mt links after t∑units of time, the sum

kj(t) = 2mt,
j
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where the factor of 2 comes from counting each link twice (both “incoming”
and “outgoing”), and we have ignored the small correction (for large t) that
would arise from not counting the initial links.

Substituting the sum into the growth equation above, we obtain

dki ki
=

dt
.

2t

Separating variables, we have

dki
ki

=
dt
.

2t

Integrating both sides, we have

1
ln ki(t) = ln t + const. ⇒ ki = Ct1/2.

2

Now define
ti = time of inception of the ith node.

The initial condition is then ki(ti) = m, and therefore

t
ki(t) = m

( 1

ti

) /2

. (1)

The number of links attached to the ith node therefore grows like t1/2, but
the prefactor m/

√
ti depends on its time of inception.

We seek the continuous probability density function p(k) that a node has
degree k.

To do so, we first define the cumulative probability distribution function

P [ki(t) < k] = probability that the ith node has fewer than k links.

We rewrite this expression using (1):

t
P [ki(t) < k] = P

[
m

( 1

ti

) /2

< k

]
(2)

= P

(
m2t

ti > .
k2

)
(3)
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Now recall that there are m0 + t nodes, and one node is added at each time
step.

Thus the time ti at which the ith node is added is uniformly distributed
between 0 and m0 + t (assuming the same rate for the first m0 nodes).

The probability density function p(ti) is therefore constant over that interval.
Since it must integrate to unity, we have

1
p(ti) = .

m0 + t

Consequently the RHS of (3) is

P

(
m2t

ti >
m

=
k2

) ∫
0+t

p(ti)dti
m2t/k2

= 1−
∫ m2t/k2 dti

0 m0 + t

m2t
= 1− .

k2(m0 + t)

Inserting this into (3), we obtain

m2t
P [ki(t) < k] = 1− .

k2(m0 + t)

We can now obtain p(k) by noting that

d
p(k) = P [ki(t) < k]

dk
d

= −
dk

(
m2t

k2(m0 + t)

2m2t

)
= k−3,

m0 + t

which in the limit of large t becomes

p(k) ∼ 2m2k−3.

This degree distribution is distinctive for two reasons:
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• Unlike the bell-curve of random networks centered at 〈k〉, here the degree
distribution is one-sided, with its maximum at 0.

• The power-law form of the distribution means that it is scale-free.

We say that the distribution is scale-free because its form is independent of
scale (and therefore time).

To be precise, note that if we have a power-law distribution

p(x) = x−α,

then it is invariant, except for a prefactor, under the change of scale x→ bx:

p(bx) = (bx)−α = b−αp(x).

The power law is the only distribution of this type [5].

Are real food webs scale-free? The answer, it seems, is sometimes:

Dunne et al. [3]

In this figure, power-law degree distributions are concave upward, exponen-
tial distributions are straight lines, and uniform distributions are concave
downward.

Though hardly the rule in ecology, a great deal of other networks are appar-
ently scale free. Some examples [4]:
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• The World Wide Web and the internet.

• Scientific citations and co-authorship networks.

• Metabolic networks. (One considers the nodes to be substrates (e.g.,
ATP, H2O) and the links to represent chemical reactions.)

The ubiquity of such networks leads one to ask if the power-law behavior is
truly signficant. For an interesting perspective on this question, see Ref. [6].

Finally, if indeed metabolism is in some way scale-invariant, might that prop-
erty carry over to the scale of entire ecosystems and therefore biogeochemical
cycles?

We don’t know, but we now turn to discuss some interesting ways in which
metabolism expresses itself at the scale of ecosystems.
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