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1 Percolation theory

Reference: Stauffer and Aharony [1].

1.1 Introduction

We have previously defined complex systems as exhibiting both structure and
variability.

To this mix, we now add “connectivity.” That is, the structure amidst vari-
ability is often a consequence of the way “microscopic” components of a
system “connect.”

1.1.1 What’s percolation?

Percolation theory provides a systematic way of studying connectivity in
which “connection” is defined geographically: two locations in space are said
to be connected if they are near each other, and unconnected if they are not.

The simplest such systems are defined on a regular lattice. Consider, for
example, a square lattice

figure

Occupy a fraction p of the lattice squares by, say, coloring them with a black
dot.

Now define

Cluster: a group of occupied (nearest) neighboring sites.

Percolation theory describes how the number and properties of clusters changes
with the occupation probability p.

We assume that the occupancy of any particular site is independent of the
others.
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Then if we have N squares and N is large,

• pN are occupied, and

• (1− p)N are empty.

The richness of the problem is seen by viewing typical clusters on square
lattices of varying p.

See, for example, this website.

At p ' 0.6, one cluster extends from one end of the lattice to the other.

We call this the critical probability pc, and we shall show that clusters formed
at pc exhibit many of the features of “structured variability.”

In particular, the study of such structures will bring us in contact with the
following subjects:

• Scale invariance. The critical clusters are fractals.

• Universality. Scaling properties do not depend on details like lattice
geometry.

• Finite-size scaling. We show how scale-invariant systems behave in sys-
tems of different size, and how that relates to non-scale invariant systems.

• Renormalization. We introduce a technique for determining properties
of scale-invariant systems.

More generally, the goal is to show how “incipient connectedness” leads to
interesting non-trivial properties.

We shall also highlight the ways such incipient connectedness occurs generi-
cally, without the need to set a parameter like p to pc.
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1.1.2 Examples 

We illustrate some of the pertinent phenomena with two introductory exam­
ples on square lattices. 

Forest fires Suppose occupied sites represent trees in a forest, and unoccu­
pied sites empty space. 

Light a fire at the top row, and sweep through the lattice row-by-row. Entire 
sweeps alternate as follows: 

•	 Recently ignited trees ignite neighbors to the bottom and right. 

•	 In the next sweep, recently ignited trees ignite neighbors to the top and 
left. 

•	 Trees burn out after one complete sweep. 

The simulation continues until all trees are burnt, or all remaining trees 
cannot be burned. 

What is the duration (number of lattice sweeps) of the forest fire as a function 
of p? 

•	 Small p: short, because only a few trees can burn. 

•	 Large p: short, because in the limit of a fully occupied forest, each tree 
immediately burns its neighbor. 

•	 p r pc: very long. 
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Indeed, there is a (theoretical) singularity at pc. 

Why? Because at p = pc the largest cluster of neighbors spans the system, 
but it contains many contorted “dead ends,” requiring the fire to wind its 
way backwards and forwards. 

Related examples can be found via Wikipedia. 

Fluid invasion We now literally think of a true “percolation” process: the 
infiltration of a water-filled rock with oil. 

Generally water spreads preferentially on solid surfaces, so that it is called 
the wetting fluid. 

As a consequence, the penetration of a small pore by the non-wetting fluid 
(oil) is impeded by surface tension. Modeling the pore as a simple capillary 
tube of radius R, the situation looks like 

σ1s σ2s 

σ 

θ 

nonwetting wetting 

The pressure difference between the non-wetting fluid and the wetting fluid 
is 

2σ cos θ 
Δp = 

R 
. 

where σ is the surface tension. 

Now imagine a large network of capillary tubes of different radii R. If  the  
invading non-wetting fluid is pushed sufficiently slowly, the nonwetting fluid 
advances along a front of least resistance, i.e., the next tube it invades is 
always the one for which the accessible radius is largest, requiring the smallest 
Δp. 

5 

https://en.wikipedia.org/wiki/Forest-fire_model


We can model this on a square lattice by assigning a random number to each
site, which we take to be representative of the pressure ∆p required to invade
that site.

The invader then merely advances at each time step by filling the neighboring
site with the smallest ∆p.

This model is called invasion percolation [2].

As the invading cluster grows to a size L, it is always representative of an
incipient spanning cluster in a system of size L. Thus this critical cluster is
obtained dynamically, rather than by choosing p = pc.

We shall show that this incipient cluster is fractal. What that means is that,
if we assigned unit mass to each occupied site, then the total mass M scales
not like Ld, where d is the number of dimensions, but rather like

M ∝ LD, D < d.

Indeed, when d = 3 we have

D = 2.5 (d = 3).

An important characteristic of such critical phenomena is that they display
universality. Here this means that the dimension D = 2.5 does not depend
on the particular type of lattice.

Consequently we expect it to be valid in truly disordered systems such as
porous rock.

Indeed, one can conduct the following experiment. Fill a rock with water,
and push the water out slowly with oil. As soon as the water reaches the
other end, stop the experiment and measure the fraction φ of the pore space
filled by the invading fluid, oil.

Since M ∝ LD, we expect.

LD
φ ∝

Ld
= L−1/2.
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Remarkably, this is precisely
what is found [3]:

The process just described is similar to the upward secondary migration of
oil from its source to its subsurface reservoir.

We find, therefore, that although a cm-scale laboratory simulation of sec-
ondary migration predicts an oil saturation of about 30%, at the 100-m
reservoir scale we would expect only 0.3%!.

1.2 Percolation in one dimension

Consider a long chain of lattice sites. Sites are occupied (black) with proba-
bility p, and unoccupied with probability 1− p.

− • − ◦ − • − • − • − • − • −◦

Since the occupation of each site is independent of the others,

P (n arbitrary sites are occupied) = pn

The probability that a fixed site is to the left end of an s-cluster is therefore

(1− p)2ps

Each site has an equal probability of being the left end of an s-cluster. Thus
in a system of size L, the total number of s-clusters is, ignoring end effects,

L(1− p)2ps

Define
ns = number of s-clusters per site.

Then, obviously,
ns = ps(1− p)2.
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We also have

P (arbitrary site is part of s-cluster) = nss,

larger than ns by a factor of s, since there are s ways an arbitrary site can
be situated within an s-cluster.

What is the percolation threshold?

• At p = 1, all sites are occupied.

• For p < 1, there are necessarily holes as L→∞.

Thus
pc = 1.

Summing over all possible cluster sizes, we obtain the probability that an
arbitrary site is a member of any cluster:∑∞

nss = p (p < pc)
s=1

where we write p < pc to eliminate the possibility of an infinite cluster at pc.

It is instructive to obtain the previous result from the definition of ns:∑ d
n s
ss =

∑
p (1

s

− p)2s = (1− p)2
∑

p
s s

ps
dp

= (1− p)2 d
p p

dp

∑
s

s

= (1− p)2 d
p

dp

(
p

1− p
= p.

)

Another quantity of interest is

ws = P (arbitrary occupied site belongs to an s-cluster)

P (site belongs to s-cluster)
=

P (site belongs to any cluster)
nss

= ∑ .
s nss
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Then, defining
S = average cluster size,

we have

S =
∑

wss =
s

∑
s

(
nss

2
)∑ .

s nss

We can calculate S explicitly, following the same scheme as above:∑
nss

2 = (1 p
s

− )2
∑

s2ps

s

d
= (1− p)2

(
p

2

dp

) ∑
ps.

s

Noting that
(
p d
dp

)2

= p d
dp + p2 d2 anddp2 using the previous trick to calculate

the sums, we obtain
1 + p

S = .
1− p

and note that S diverges at p = pc = 1.

Next, we define the correlation function

g(r) = P (site a distance r from occupied site is in same cluster)

Obviously,
g(0) = 1 and g(1) = p.

Thus
g(r) = pr.

Consequently g(r) decays exponentially, like

g(r) = e−r/ξ,

where we have defined

ξ = correlation length

=
−1

.
ln p

To determine how ξ behaves near p = pc = 1, write

p = 1− (pc − p).
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Then for p close to pc = 1,

ln[1− (pc − p)] ' −(pc − p)

yielding

1
ξ = , p

pc − p
→ pc.

Thus ξ also diverges as p→ pc.

How does ξ vary with S? Comparing both results, we have

S ∝ ξ, p→ pc

since as p→ pc both quantities represent complete occupancy of the lattice.

Summary: In one dimension, the mean cluster size S and the correlation
length ξ diverge like

(pc − p)−1,

a simple power law.

Similar power-law behavior will be evident in higher dimensions.

1.3 Clusters in two dimensions

A two dimensional square lattice serves to illustrate the main difficulties of
higher dimensions.

Consider a cluster of size s = 1:

◦
◦ × ◦ P (s = 1) = p(1− p)4

◦

Size s = 2

◦
◦ × ◦

(2 orientations) P (s = 2) = 2p2(1− p)6

◦ × ◦
◦
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Size s = 3:
◦ ◦ ◦◦ × ◦ × × ◦◦ × ◦ (×2)

◦
(×4)◦ × ◦◦ × ◦ ◦◦

P (s = 3) = 2p3(1− p)8 + 4p3(1− p)7

Size s = 4:

× × × ××
(2) × (8) × × (4) × × (4)

× ×
(1)× × ×× × × ××

total: 19

Size s = 5: 63.
Size s = 24 : 1013!

These objects, called lattice animals, can be very complex.

Yet the general form of the probability P (s = s0) is clear: we need to know
the multiplicity of various forms, and the perimeter t.

Thus we define

gst = number of lattice animals of size s and perimeter t.

Then the average number of s-clusters per lattice site in d dimensions is

ns =
∑

gstp
s(1

t

− p)t.

In general, there is no exact solution for gst, only special cases on special
lattices.

1.4 Percolation on the Bethe lattice

The Bethe lattice—also known as a Cayley tree—is one such special lattice.
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Each site on the Bethe lattice has z > 2 neighbors. The simplest case is z = 3: 
  

The center is the origin, and the exterior sites are said to be on the surface. 

1.4.1 Infinite dimensionality 

The Bethe lattice apparently does not reside in any particular number of 
dimensions d. 

However there is a sense in which the Bethe lattice corresponds to d = ∞. 

To see this, take the radius of the Bethe lattice to be r. If the Bethe lattice 
lived in d-dimensions, we’d have 

dvolume (# sites) ∝ r 
d−1surface (# exterior sites) ∝ r 

which implies 

surface ∝ (volume)(d−1)/d = (volume)1−1/d. 

On the Bethe lattice, 

• The origin is surrounded by z = 3 sites. 

• The 2nd shell has z(z − 1) = 6 sites. 

• The 3rd has z(z − 1)2 = 12 sites, etc 
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Thus within a distance r from the origin, there are, including the origin, and
setting z1 = z − 1,[

2 r 1
] z(zr

1 + z 1 + z1 + z1 + . . . z1
− = 1 + 1 − 1)

volume sites.
z1 − 1

But at a distance r there are

zzr−1
1 surface sites.

Then, taking r large,

surface
lim
r→∞ volume

= lim
r→∞

zzr−1
1

1 + z(zr1−1)
z1−1

=
z1 − 1

z1
=
z − 2

= const.,
z − 1

where the second equality follows from dividing the numerator and denomi-
nator by zzr−1

1 and taking the limit. Thus as r →∞,

surface ∝ volume ⇒ d =∞.

This observation does not diminish the interest of the Bethe lattice for per-
colation, but it does point out its inapplicability to modeling branched d = 2
structures such as river networks.

1.4.2 Percolation threshold

For what values of p is the origin connected to infinity? Note that

• z − 1 “new” bonds emanate from each site.

• These bonds connect to an occupied site with probability p.

Thus
〈# occupied new neighbors〉 = (z − 1)p.

Note that

(z − 1)p < 1 ⇒ P (connected path)→ 0 exponentially.

Thus we expect a connected path when

1
p > pc =

z − 1
=

1
for z = 3.

2

Does p > pc guarantee a connection of the origin to ∞?

13



1.4.3 The strength P

Define

P = P (arbitrary site—e.g., origin—belongs to infinite cluster).

Note that the arbitrary site may be either occupied or unoccupied. We
distinguish between

p = “concentration”

P = “strength”

where the sense of “strength,” corresponds, e.g., to a kind of rigidity of the
percolation cluster (were it, say, connected by springs).

To calculate P , we define

Q = P (arbitary occupied site x is not connected to ∞
through one fixed branch).

Take z = 3 for simplicity. Then the local geometry looks like

We have
P (2 sub-branches do not connect x′ to ∞) = Q2,

implying that

P (x′ occupied but not connected to ∞) = pQ2.

Therefore

Q = P (connection broken at x′) + P (connection broken elsewhere)

= (1− p) + pQ2,

which has the solutions

1
Q = 1 and Q =

− p
.

p

We identify the first solution with p < pc and the second with p > pc.
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Now note that  

P (origin is occupied but not connected to ∞) =  p− P  
3 = pQ . 

The first equality follows from the observation that only occupied sites can 
be connected to infinity. The second relation arises from the definition of Q 
with z = 3. Equating the two, we have 

3 p− P  = pQ ⇒ P = p(1 −Q3). 

Then our two solutions for Q correspond to 

p < pc, Q = 1  ⇒ P = 0  

and 
1 − p P 

 
1 − p 

 3 

p > pc, Q = ⇒ = 1  − . 
p p p

Thus the strength P—the probability that the origin belongs to the infinite 
cluster—rises abruptly at pc = 1/2. 

Using our previous analogy between P and rigidity, one may think of this as 
a transition from no rigidity, to a kind of floppiness, to strong rigidity. 

Qualitatively, the behavior of P(p) is similar to what one finds in classical 
phase transitions, such as the spontaneous magnetization that occurs in the 
transition from paramagnetism to ferromagnetism as the temperature T is 
lowered through the Curie temperature Tc. 

To zoom in on the behavior of P as p → pc from above, we substitute x = 
p− pc and expand in powers of x. We obtain, to leading order, 

P ∝ (p− pc) , p→ pc ↓ 

15 



1.4.4 Mean cluster size S

Assume again that z = 3. Define

T = mean cluster size for 1 branch.

i.e., the average number of sites connected to the origin and belonging to 1
branch.

Note that sub-branches have the same mean cluster size (because all sites in
the interior are essentially equivalent).

Therefore each occupied neighbor contributes, on average, T sites to the
cluster, so that

T = P (neighbor empty)× 0

+ P (neighbor occupied)× (1 + 2T )

where the factor of 2T comes from the two sub-branches. We obtain

p
T = p(1 + 2T ) ⇒ T = , p < p

− c = 1/2.
1 2p

The mean cluster size S is then the sum of all z = 3 branches plus the origin:

S = p(1 + 3T ).

Substituting our solution above for T , we obtain

p(1 + p)
S = , p < p =

− c 1/2.
1 2p

We have therefore obtained exact results for S(p < pc) and P(p > pc).

How does the mean cluster size S behave as p→ pc from below? Near pc the
numerator of S ∼ const., so

const.
S ∝ 1 p2 −

and therefore
S ∝ (pc − p)−1 , p→ pc ↑

Thus S diverges, with exponent −1, near the critical point pc.
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In contrast, we found above that P vanishes at pc like P ∝ (p− pc)1.

Analogous exponents on d-dimensional lattices are more complicated. The
power-law approach to criticality, however, is general, and is a defining char-
acteristic of thermal phase transitions.

1.4.5 Cluster numbers ns(p)

Recall the number of s-clusters per site:

ns(p) =
∑

gstp
s(1− p)t,

t

where gst is the number of s clusters with perimeter t.

The perimeter is straightforwardly computed on the Bethe lattice:

• a 1-cluster has z neighbors.

• a 2-cluster has z + (z − 2) neighbors (it removes one neighbor and adds
z − 1).

• each additional site adds z − 2 neighbors.

Thus an s-cluster has

t = z + (s− 1)(z − 2)

= s(z − 2) + 2

Since each s-cluster has the same perimeter, gst → gs, and the expression for
ns(p) becomes

ns = g s 2+s(z 2)
sp (1− p) − .

We set z = 3, and normalize by ns(pc) to avoid the prefactor gs:

ns(p)

ns(pc)
=

(
1− p 2

1− pc

) [(
p

pc

)(
1− p
1− pc

)]s

17



Since pc = 1/2 we replace the product of denominators in the brackets with
a factor a = 4 and write

ns(p)

ns(pc)
=

(
1− p 2

1− pc

) [
1− a(p− pc)2

We obtain a further simplification by writing

]s
, a = 4.

c = − ln 1− a(p− pc)2

∝ (p−

[
pc)

2, p→ p

]
c

so that
ns(p) cs

n
∝ e− , p

s(pc)
→ pc

where we have taken the prefactor constant as p→ pc.

Thus the ratio of cluster numbers decays exponentially with cluster size. In
two and three dimensions such an exponential decay turns out to be valid
only for large clusters for p < pc.

We next seek the asymptotic behavior of the cluster number ns(p) near pc,
rather than the ratio.

Recall the expression for the mean cluster size that we derived earlier in
Section 1.2:

S =

∑
s nss

2

where

∑
s nss

∝
∑

nss
2, p

s

→ pc

we obtain the proportionality since the denominator is finite at pc. [It
gives the probability (p) that an arbitrary site belongs to any cluster.]

But we already found in Section 1.4.4 that

S ∝ (p− pc)−1, p→ pc ↑

Therefore ∑
s2n 2

s(pc) =∞ and
∑

s ns(p = pc) is finite.
s s

6

What more can we say about ns(pc)?
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Clearly it must decay with increasing s. But how?

If it were to decay exponentially, we would necessarily have

S(pc) ∝
∑

s2n 2 αs
s(pc)

s

∝
∑

s e− , α > 0.
s

But then S(pc) would be finite, contradicting the above.

Thus we assume a power-law decay with exponent τ for large s:

ns(pc) ∝ s−τ

(In studies of phase transitions τ is known as the Fisher exponent.)

The assumption of this power-law relation allows us to evaluate S and specify
τ . Assuming p is just below pc,

S ∝
∑

s2 ns(p)
ns(pc)

s∑ ns(pc)

= s2−τe−cs

s

=

∫
s2−τe−csds

To evaluate the integral, substitute z = cs so that

S =

∫ (z
c

)2−τ
e−z

dz

c

= cτ−3

∫
z2−τe−zdz

The exponential decay of the integrand for large z guarantees its convergence,
so that

S ∝ cτ−3 = (p− pc)2τ−6

since, by definition, c = (p− pc)2.

But we previously found S ∝ (p− pc)−1. Therefore

2τ − 6 = −1 ⇒ τ = 5/2.
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Finally, using our result ns(p) ∝ ns(pc)e
−cs, we obtain

ns(p) ∝ s−5/2e−cs , c = (p− pc)2.

The boxed relation holds for all p and large s; the second relation is for p
near pc.

This completes our study of the Bethe lattice. The main results are the power
laws for

• mean cluster size S ∝ (pc − p)−1

• strength P ∝ (p− p 1
c)

and the above result for the cluster numbers ns(p).

1.5 Scaling laws in d-dimensions

We now seek an understanding of percolation that includes the Bethe-lattice
solution as a special case.

To do so, we postulate the following scaling laws:

Cluster numbers:
ns(p) ∝ s−τe−cs, s→∞

where
c ∝ |p− pc|1/σ, p→ pc

Here τ and σ are constants that depend only on d.

We also have the ratio
ns(p)

e
ns(pc)

∝ −cs

accompanied, as before, by the critical cluster number

ns(pc) ∝ s−τ

20



1.5.1 The strength P

We seek

P = fraction of sites belonging to infinite cluster

= (fraction of occupied sites)− (fraction belonging to finite clusters)

= p− nss.
s finite

At p = p ,

∑
c P = 0 and therefore∑

ns(pc)s =
∑

ns(pc)s = pc
s finite s

For the infinite sum to converge, we require τ > 2.

Now approximate P near pc by

P = pc −
∑

ns(p)s+
s

O(p− pc), p→ pc

Then

P '
∑

[ns(pc)
s

− ns(p)]s

=
∑

s1−τ(1− e−cs)
s

'
∫
s1−τ(1− e−cs)ds

The passage from the summation to the integral is made possible by noting
that the main contribution to the sum comes for large s ∼ 1/c as c→ 0.

We integrate by parts, using
∫
f ′gds = − fg′ds+ (fg) where

f(s) = s2−τ and g(

∫
s) = 1− e−cs.

The term fg yields

s2− 0τ(1− e−cs)
∣∣∞ = 0− s2−τ [cs− (cs)2/2 + . . .] = 0
0

by requiring (as one finds) τ < 3. The remaining integral,

∣∣
after substituting

z = cs as in Section 1.4.5, yields cτ−2 × const. Consequently

P ∝ cτ−2 = (p− pc)(τ−2)/σ
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and therefore
P = (p− pc)β

where we have obtained the scaling relation

τ
β =

− 2

σ
.

Note that the Bethe lattice solution β = 1, τ = 5/2, and σ = 1/2 is obtained
as a special case.

1.5.2 The mean cluster size S

Near pc, we have
2

S

∑
s nss' , p
pc

→ pc

Converting to an integral,

S ∝
∫
s2nsds

∝
∫
s2−τe−csds

= cτ−3

∫
z2−τe−zdz

Then
S ∝ cτ−3 = |p− pc|(τ−3)/σ

and therefore
S ∝ |p− pc|−γ ,

where we have obtained the critical exponent for cluster sizes,

3
γ =

− τ
σ

.

We proceed to generalize these results for the kth moment of n∑ s, defined by

Mk = skns.
s
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As above,

Mk ∝
∑

sk−τe−cs

s

∝
∫
sk−τe−csds

∝ cτ−1−k
∫
zk−τe−zdz

yielding,
Mk ∝ cτ−1−k ∝ |p− pc|(τ−1−k)/σ.

This is simply a generalization of our previous results for β (k = 1) and −γ
(k = 2).

Thus we see that “everything” depends on two exponents, σ and τ (or β and
γ).

These relationships, known as scaling laws, originated in the study of thermal
phase transitions.

The exponents depend on the dimension d, but the relations between them
do not.

Importantly, the exponents do not depend on the type of lattice (square,
triangular, etc.) This is known as universality.

1.6 Fractals

Near pc, the geometry of clusters turns out to be fractal. In this section we
define fractals, and show why this special geometry emerges near the critical
point.

1.6.1 Cluster radius

Clusters can have complex shapes.
FIGURE
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One way of expressing this complexity is to determine

Rs = radius of gyration of an s-cluster,

which we express as

R2 1
s =

where

∑s
s
i=1

|~ri − ~r0|2,

~ri = position of ith site in cluster

and

~r0 = center of mass of an s-cluster

1
=

The

∑s
~ri.

s
i=1

mean-square distance between every pair of sites on the cluster is also
related to Rs:

1
r

s

∑s s

~
s
i=1

∑
j=1

| i − ~rj|2 = 2R2
s,

where the factor of 2 comes from counting each pair twice.

1.6.2 Correlation length

Define the correlation length

ξ = an average distance between two cluster sites.

Whereas 2R2
s is the mean-square distance between two sites on an s-cluster,

ξ2 is this same distance averaged over all finite sizes s.

We obtain that average by noting that, as already discussed,

P (site belongs to s-cluster) = sns.

There are (obviously) s sites in each s-cluster. We thus weight the average
of R2

s by s · sns, to obtain the squared correlation length

2

ξ2 2
∑

sRss
2ns

= ∑ .
s s

2ns
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In Section 1.2 we saw how ξ diverges as p → pc when d = 1. We expect
similar behavior for d > 1 and therefore write

ξ ∝ |p− pc|−ν

where ν is another exponent.

Given these definitions, we seek how Rs varies with s at p = pc. But we must
first take a detour and finally define what we mean by “fractal.”

1.6.3 The fractal dimension D

Suppose each occupied site is assigned a unit of mass, while unoccupied sites
have no mass.

In a “Euclidean” or “space-filling” geometry, we expect that

mass(s) ∝ Rd
s in d dimensions.

Suppose instead that we observe

mass ∝ lengthD.

Objects are called fractals if

D < d and D 6= integer.

Now assume
Rs ∝ s1/D, (p = pc, s→∞)

The fractal dimension D is known exactly in d = 2 and approximately in
d = 3:

d = 2 : D = 91/48 ' 1.9

d = 3 : D ' 2.5

Since D and ν both describe the geometry of critical clusters, we expect
that they are related. To see how, we recall from Section 1.5.2 that the kth
moment of ns,

Mk =
∑

skn (
s

s

∝ |p− pc| τ−1−k)/σ.
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Since Rs ∝ s1/D, our expression for ξ2 above is simplified to

M
ξ2 2+2/D

= p
M2

∝ | − pc|−2/(Dσ).

Comparing to our definition of the correlation-length exponent ν just above
in Section 1.6.2, we immediately find

2
2ν =

Dσ
or

1
= σν.

D

We have thus related the fractal dimension D to the correlation exponent ν.

1.6.4 Scaling of the infinite cluster at p = pc

Away from pc, we know the following about the largest cluster:

• For p < pc, the largest cluster is finite.

• For p > pc, the largest cluster is infinite.

What happens at p = pc?

To answer this question, we pose the following question:

How does the size smax of the largest cluster vary in a finite system of size L?

• For p < pc, we have, from Section 1.5,

ns ∝ s−τe−cs, s→∞,

But the number of clusters of size smax in a system of size L is just

1
nsmax

∼ s
Ld
∝ −τ

maxe
−csmax.

Taking logarithms on both sides of the proportionality and noting
log smax � smax, we have

smax ∝ logL, p < pc .
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• For p > pc, we have the obvious relation

smax ∝ Ld, p > pc .

• For p = pc, we expect that the radius of gyration Rsmax
scales with the

system size:
Rsmax

∝ L, p = pc.

By the results of the previous section,

Rs ∝ s1/D, p = pc, s→∞.

Combining these relations, we obtain

smax ∝ LD, p = pc ,

Thus the largest cluster at p = pc has fractal dimension D < d, which results
from the transition from smax ∝ logL just below pc to smax ∝ Ld just above.

This result, which follows here from the scaling assumption R 1
s ∝ s /D of the

previous section, has been confirmed by extensive numerical simulation.

1.6.5 Relating D to d via the correlation length ξ

The above results correspond to p well below pc, at pc, and well above it.

Now suppose p is near pc, with p > pc, and consider the correlation length ξ.

We consider two samples of different size L of a larger system.

• If L� ξ, we inherit the above results for p = pc:

smax ∝ LD.

• If L� ξ, the probability P that a site belongs to the infinite (spanning)
cluster provides

smax ∝ PLd ∝ (p− pc)βLd, p→ pc.
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These two expressions should be equal when 

−νL ∼ ξ ∝ |p − pc| . 

where the latter expression derives from our definition of the correlation ex­
ponent ν (Section 1.6.2). 

Substituting L ∼ |p−pc|−ν into each equation for smax and equating the two, 
we obtain 

β − dν = −Dν ⇒ D = d − β/ν , 

which relates the difference between the fractal and Euclidean dimensions to 
the correlation exponent ν. (The various scaling relations in Section 1.5.2 
can now be used to obtain further relations that include the dimensionality 
d.) 

1.7 Finite-size scaling 

The dependence of smax on the system size L and the correlation length ξ 
suggests that there is a general way in which behavior in finite systems reflects 
the “true” asymptotic scaling one finds in infinite systems. 

Consider, for example, the strength P—the probability that a site belongs 
to the spanning cluster. As we have already seen, in an infinite system P 
sharply rises from zero at p = pc: 

What happens, however, when L is finite? 

•	 When L is small, clusters formed at p < pc can span the finite system 
provided that the correlation length ξ 2 L. 

• Larger L, however, requires larger p associated with larger ξ. 

Consequently P must depend on both p and L. 
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We expect that, for large systems near pc,

P = P [(p− pc), L], p→ pc, L→∞

We seek a functional dependence on (p − pc) and L for which the tradeoff
between the correlation length ξ and the system size L is evident.

Since (p− pc) controls the correlation length, we propose the form

P = L−AF
[
(p− pc)LB

]
, p→ pc, L→∞

We proceed to infer the form of F .

First, note that as L→∞ for p > pc, we obtain, for p near pc,

P ∝ (p− pc)β independent of L.

In other words, as L becomes large, the dependence of P on L must vanish.

More generally, for large z = (p− pc)LB,

F (z) ∝ zA/B, z →∞

so that the dependence of P on L vanishes, yielding

P ∝ (p− pc)A/B ⇒ β = A/B.

where the relation to β derives from its definition in Section 1.5.1.

At p = pc, we have seen that

smax ∝ LD, p = pc.

Therefore the probability P that a site belongs to smax scales like

sP max
=

L
∝ LD−d, p = pc.d

Since this result is obtained at p = pc, it must be equivalent to

P(0) = L−AF (0)

Therefore
A = d−D = β/ν
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where the second equality was derived just above in Section 1.6.5.

Using β = A/B, we find
B = A/β = 1/ν.

Substituting into our general form for finite-size scaling, we obtain

P = L−β/νF (p− pc)L1/ν ,

which expresses

[ ]
P as a function of L and p − pc in terms of the correlation

length exponent ν and the scaling relation P ∝ (p− pc)β.

To understand this result, imagine that we measure P as a function of p− pc
and L. Finite-size scaling says that plots of

P/L−β/ν vs. (p− pc)L1/ν

will all fall on the same curve. It is thus a way of estimating β and ν.

As another type of practical application, consider again the problem of inva-
sion percolation described in Section 1.1.2.

The mass M of the invading cluster at “breakthrough” in a system of size L
scales like

M ∝ LD

The fraction of sites belonging to this cluster is P .

Since the invading cluster at breakthrough corresponds to the largest cluster
at p = pc, we have

P = P(0) ∝ L−β/ν = LD−d = L−1/2 for d = 3.

Finally, we expose the crucial role played by the correlation length in the
above arguments.

We express finite-size scaling in terms of the correlation length ξ ∝ |p− pc|−ν
so that

P = L−β/νF1(L/ξ).
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More generally, if a quantity Q scales for large L� ξ like

Q ∝ |p− p χ
c| ∝ ξ−χ/ν, L� ξ,

we merely replace β with χ above so that

Q(L, ξ) = L−χ/νq1(L/ξ)

{
ξ−χ/ν L

χ/ν

� ξ∝ ,
L− L� ξ

where the scaling for small L� ξ corresponds also to scaling with respect to
any L and p = pc, as in the example of invasion percolation.

1.8 Renormalization

Renormalization is a powerful method for understanding systems that exhibit
self-similarity.

1.8.1 Self-similarity

Let us clarify the meaning of self-similar. As we have seen above (Section
1.7) in our discussion of finite-size scaling, the behavior of any quantity, say
P , with respect to L depends on the size of L compared to the correlation
length ξ, i.e., {

ξD−d L� ξP(L, ξ) ∝
LD−d L� ξ

Thus all systems smaller than the correlation length ξ are similar to each
other (in an average sense), in that they “see” only the system size L rather
than any intrinsic limitation ξ.

More compelling proof of this statement comes from numerical simulations
of percolation at p = pc, where one finds outstanding adherence to the power
law s D

max ∝ L .

At some point, of course, small clusters become sensitive to the lattice con-
stant or pixel size, and large clusters know that they are pushing up against
the correlation length ξ. So we expect that self-similarity holds for

lattice constant� cluster size� ξ
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1.8.2 Real-space renormalization

We discuss a particular form of renormalization, called real-space renormal-
ization.

Consider, for example, an L × L square lattice. Replace each site on this
lattice with a “super-site” of linear dimension b� ξ.

Supersites contain some sort of average of the original sites. Consequently
information is lost.

From self-similarity, however, we expect that each supersite of bd micro-sites
relates to the others in a way that is similar to the statistical relations between
the micro-sites.

To implement such a procedure, we need an averaging rule to determine when
a supersite is “occupied.”

Once the averaging rule is determined, we then calculate

p′(p) = P (supersite is occupied given microsites

occupied with probability p).

Clusters of supersites are then statistically similar to clusters of microsites
when p is a fixed point of p′(p), i.e., when p = p∗ such that

p′(p∗) = p∗.

We then identify pc = p∗ as the occupancy fraction of microsites that yields
self-similar behavior.

1.8.3 Calculation of the correlation-length exponent ν

All of this depends crucially on the correlation length ξ, which must be the
same in both the micro-lattice and averaged lattice, i.e.

ξ(micro-sites) = ξ′(super-sites, in micro-units)
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In the original lattice, we have, near pc,

ξ = const · |p− pc|−ν.

In the renormalized (averaged) lattice, we must have

ξ′ = const · b · |p′ − pc|−ν.

where the constants are the same and b is the averaging length.

Since ξ = ξ′, we have
b|p′ − pc|−ν = |p− p ν

c|−

This is the basic statement of renormalization. Taking logarithms on both
sides, we solve for the correlation exponent ν:

1

ν
= log

(
|p′ − pc| log

log
|p− pc|

)/
λ

b = .
log b

To understand λ, we expand p′(p) around its fixed point p∗:

p′(p) = p′[p∗ + (p− p∗)]
dp′

= p′(p∗) + (p− p∗) + (p p∗)2.
dp

∣
p=p∗

O −

Since p′(p∗) = p∗ = pc, we have, after dropping

∣∣∣
higher-order terms,

dp′

dp

∣∣∣∣
p=p∗
' p′ − pc

= λ.
p− pc

Consequently we see that λ gives the rate at which p′ changes with respect
to p near pc, thus determining the stability of the fixed point p∗ of the renor-
malization group transformation.

1.8.4 One dimension

As a first example, consider one-dimensional percolation (Section 1.2).

We group the sites into cells of b sites.
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These cells are “connected” only if each site among the b sites is occupied.
Thus

p′ = pb.

The fixed point p∗ = 1, which we identify with the percolation threshold
pc = 1 deduced earlier.

We also calculate the correlation length ξ. In units of the distance between
supersites, we have

ξ′ = ξ/b.

At p = p′, ξ′ = ξ only if ξ = 0 or ∞. We identify the latter with the fixed
point p∗ = pc = 1.

We calculate the correlation-length exponent ν by first computing

dp′
λ = =

dp

∣∣∣∣ bpb−1

p=p∗
|p=1 = b

which yields
1

ν
=

log λ
= 1,

log b

precisely as we obtained earlier in Section 1.2.

1.8.5 Triangular lattice

In higher dimensions we must identify transformations p′ that provide con-
nections. These connections connect lines in d = 2, planes in d = 3, etc.
There is no single way to do this, and no way yields an exact result.

As a rule, we say that a supersite is occupied if contains a cluster that spans
bd sites.

We consider site percolation on a triangular lattice.
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Supersites—the big circles—are located at centers of triangles such that no 
original sites are shared among supersites. 

A supersite is considered occupied if occupied microsites span any of the three 
lattice directions. Thus 

'p = P (all 3 sites occupied) + P (2 neighboring sites occupied). 

Neighbors turn out to be any pair, and there are three ways of choosing pairs. 
Thus 

' p = p 3 + 3p 2(1 − p). 

Graphically, p'(p) looks like 

∗ ∗The fixed points p that solve p'(p ∗) =  p are 

∗ p = 0, 1/2, and 1. 

'These points occur wherever p'(p) intersects the diagonal line p = p. 

∗If we interpret the mapping p'(p) as a dynamical system, we find that p = 0  
∗ ∗and p = 1  are  stable fixed points, and p = 1/2 is  unstable. (Recall that 

|dp'/dp|p ∗ < 1 ⇒ stability.) 
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In other words, successive mappings initiated above p∗ = 1/2 lead to a fully
occupied superlattice, whereas successive mappings below p∗ = 1/2 lead to a
fully empty superlattice.

We thus identify pc = 1/2, in exact agreement with the known value for the
triangular lattice.

The rate at which at which perturbations from pc are unstable under the
mapping p′(p) is given by

dp′
λ =

dp

∣∣∣∣
p∗

= 6p− 6p2|1/2 =
3

2

As in Section 1.8.4, we obtain the correlation-length exponent ν from λ:

log b
ν =

log λ
=

log(31/2)
= 1.355.

log(3/2)

Here we have used b2 = 3 since 3 microsites contribute to 1 supersite. The
result ν = 1.355 compares very well to conjectures that the exact result is
ν = 4/3.
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