
CHAPTER 12 
  

BED CONFIGURATIONS GENERATED BY WATER 
FLOWS AND THE WIND 

 
 

INTRODUCTION  
1  A striking characteristic of the transport of granular sediment over a bed 

of the same material by a turbulent flow of fluid is that in a wide range of 
conditions the bed is molded into topographic features, called bed forms, on a 
scale that is orders of magnitude larger than the grains.  Little ripples at one’s feet 
at the seashore, or on a dry river bed, or in the desert, and gigantic dunes in the 
desert and (even more common, but not apparent to the casual observer) in large 
rivers and the shallow ocean—all of these are examples of bed forms.  
Generations of scientists and engineers have marveled at the rich and confusing 
variety of these features. 

2  First I will introduce some terminology.  The overall bed geometry that 
exists at a given time in response to the flow (the bed configuration) is composed 
of individual topographic elements (bed forms).  The aggregate or ensemble of 
similar bed configurations that can be produced by a given mean flow over a 
given sediment bed is the bed state:  The bed configuration differs in detail from 
time to time, and the bed state can be considered to be the average over the 
infinity of configurations that are possible under those conditions.  The term bed 
phase can be used for recognizably or qualitatively different kinds of bed 
configurations which are produced over some range of flow and sediment 
conditions and which are closely related in geometry and dynamics.  Finally, the 
term bedform (one word) is widely used, indiscriminately, for all four of the 
foregoing aspects of the bed geometry. 

3  Bed configurations that are common in natural flow environments can be 
generated by purely unidirectional flows, combined flows, and purely oscillatory 
flows.  I pointed out in Chapter 6 that even purely oscillatory flows in natural 
flow environments can be more complex than those with only one oscillatory flow 
component, and that a wide range of oscillatory flows can be superimposed on a 
unidirectional current.  (This would be a good point at which to go back and 
review the nature of oscillatory and combined flows.) 

4  You can well imagine, then, how wide a range of bed configurations we 
should expect to have to deal with if we endeavor to make an inclusive survey of 
bed configurations.  The enormous range of flows that can generate bed 
configurations, together with the complex dynamics of the response of the bed, 
makes for highly varied geometry of the resulting bed configurations.  In one 
sense, though, this is fortunate for sedimentologists, because it provides a great 
variety of different sedimentary structures which can be used in attempting to 
make paleoflow interpretations!  
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5  Both engineers and geologists have been making laboratory experiments 
on bed forms for over one hundred years, as well as watching their movement in 
natural flow environments.  Understanding of unidirectional-flow bed 
configurations is fairly good by now, although by no means perfect.  Work on 
oscillatory-flow bed configurations is less well advanced, I think owing to the 
difficulty of arranging oscillatory flows with long oscillation periods in the 
laboratory.  Finally, combined-flow bed configurations have still not been much 
studied. 

6  If the flow changes with time, the bed configuration adjusts in response.  
In natural flows, equilibrium between the bed and the flow is the exception rather 
than the rule:  usually the bed configuration lags behind the change in the flow.  
Such disequilibrium is a major element of complexity that makes relationships 
among bed phases much more difficult to decipher, but its effects are very 
important in natural flow environments. 

7  In the natural environment most bed forms are seen in sands, but they are 
produced in silts and gravels as well.  Of greatest interest to geologists, 
oceanographers, and hydraulic engineers are bed forms produced by flows of air 
or water over mineral sediments with equant grain shape, but a far wider range, 
important in many engineering applications, can be produced by flows of other 
fluids with other densities and viscosities over sediments less dense or more dense 
than the common mineral sediments.   

8  Many natural scientists believe (and I am among them) that there must be 
enormous numbers of Earth-like planets throughout the universe.  The field of 
extraterrestrial planets is a rapidly growing field nowadays, and it would not 
surprise me to learn, in the not too distant future, that such Earth-like planets are 
being discovered.  In studying a physical phenomenon like bed configurations, 
there is an element of danger in restricting our consideration only to the few 
points in the spectrum of density ratios with which we have at hand:  sand in 
water on Earth; sand in air on Earth; sand in the Martian atmosphere of the 
Venusian atmosphere; see Figure 8-5, in Chapter 8).  In a sense, there is nothing 
special about those particular points in the spectrum!  

9  Apart from their intrinsic scientific interest, bed forms are important in 
both geology and engineering.  Large subaqueous bed forms many meters high 
can be obstacles to navigation, and their movement can be a threat to submarine 
structures.  Engineers are interested in bed configurations partly because they play 
an important role in determining the sediment transport rate, but perhaps mainly 
because of their importance in determining the resistance which a channel 
presents to a flow.  For example, predicting the depth of flow in a channel built 
with a given slope and designed to carry a given water discharge necessitates 
knowing the bed configuration to be expected.  Sedimentologists have given 
attention to bed configurations mostly because of their role in the development of 
stratification in sedimentary deposits; bed forms are one of the most useful tools 
available for interpreting ancient sedimentary environments.  

10  The status of observations on bed configurations is good, but there is 
much room for further improvement.  It is easy to observe bed configurations in 
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steady unidirectional and simple bidirectional oscillatory flows in laboratory 
channels and tanks.  But there is still a great need for further laboratory work, in 
part because the usually small width-to-depth ratios of tanks and flumes tend to 
inhibit full development of the three-dimensional aspects of the bed geometry, but 
also, and more importantly, because not much work has been done with 
multidirectional oscillatory flows, and, especially, combined flows.  And even the 
largest of laboratory experiments are restricted to flow depths at the lower end of 
the range of natural flow depths.  In nature, on the other hand, observations on 
bed configurations are limited by practical and technical difficulties, and the flows 
that produce them are usually more complicated.   

 
UNIDIRECTIONAL-FLOW BED CONFIGURATIONS  

Introduction  
11  Bed configurations made by unidirectional flows have been studied 

more than those made by oscillatory flows and combined flows.  They are formed 
in rivers and in shallow marine environments with strong currents, and also in 
engineering flows like outdoor canals and channels of various kinds, as well as in 
pipes and conduits carrying granular materials.   

12  In shallow marine environments, even symmetrically reversing tidal 
currents produce bed forms that look much like those in truly unidirectional 
flows, presumably because the current in each direction flows for a long enough 
time for the bed to respond to what it feels as a unidirectional flow.  In 
asymmetrical tidal currents, the bed forms show net movement and asymmetry in 
the direction of the stronger flow, but they suffer interesting modifications by the 
weaker flow in the other direction.  

 
A Flume Experiment on Unidirectional-Flow Bed Configurations  

13  To get an idea of the bed configurations produced by a steady uniform 
flow of water over a sand bed, and the succession of different kinds of bed 
configurations that appear as the flow strength is increased, imagine making a 
series of exploratory flume experiments on sand with a mean size between 0.2 
mm and 0.5 mm.   

14  Build a large open channel consisting of wood or metal, with a 
rectangular cross section (Figure 11-1).  The channel might be about one meter 
wide and a few tens of meters long.  Install a pump and some piping to take the 
water from the downstream end and recirculate it to the upstream end of the 
channel.  You might mount the whole channel on a set of screw jacks near the 
upstream end, so that you can change the slope of the channel easily, but this is 
not really necessary.  It would also be nice to make at least one sidewall of the 
channel out of glass or transparent plastic, for good viewing of the bed 
configurations. 
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Figure 12-1.  A home-made flume for studying bed configurations in 
unidirectional flow. 
 

 
 

Figure 12-2.  The sequence of bed phases with increasing flow velocity at a given 
flow depth, for medium sand. 

 
 

15  Place a thick layer of sand on the bottom of the channel and then pass a 
series of steady and uniform flows over it.  Arrange each run to have the same 
mean flow depth (as great as the flume will allow, ideally at least a large fraction 
of a meter, but a decimeter or two would suffice) and increase the mean flow 
velocity slightly from run to run.  
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16  In each run, let the flow interact with the bed long enough for the state 
of the bed to be statistically steady or unchanging.  After that time the details of 
the bed configuration change constantly but the average state of the bed remains 
the same.  The time required for the flow and the bed to come into a new state of 
equilibrium might be as little as a few minutes or as long as several days, 
depending on the sediment transport rate, the size of the bed forms that develop, 
and the extent of modification of bed forms that remained from the preceding run. 

 

 
 

Figure 12-3.  Two stages in the development of a train of ripples from a planar 
sand bed.  Flow is from left to right, and light is from the upper left.  The view is 
straight down on the sand bed.  The depression in the left part of the pictures was 
made by dragging a rod along the bed.  The mound thus produced was modified 
by the flow to become a ripple.  (From photographs similar to those shown in 
Southard and Dingler, 1971.) 

 

 

17  You could speed the attainment of equilibrium somewhat by continually 
adjusting the slope of the channel to maintain uniform flow as the bed roughness 
changes (the rougher the bed, the steeper the water-surface slope for a given water 
discharge), but these adjustments are not necessary, because the flow itself adjusts 
the bed for uniform flow by erosion at one end and deposition at the other. 
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18  If you are impatient for results, the way to make bed forms develop 
most rapidly is to start with an irregular sediment bed, but it is more instructive to 
start with a planar bed.  (You can easily arrange a planar bed by passing a straight 
horizontal scraper blade along the bed.  If you mount the blade on a carriage that 
slides on the straight upper edges of the flume walls, with a little care you obtain a 
beautifully planar bed.)  Now turn the pump on and gradually increase the flow 
velocity. 

 
Ripples: 

19  After you exceed threshold conditions (Figure 12-2A), wait for a short 
time, and the flow will build very small irregularities at random points on the bed, 
not more than several grain diameters high, from which small ripples develop 
spontaneously.  

20  You can help bed forms to develop on the planar bed by poking your 
finger into the bed at some point to localize the first appearance of bed forms.  
The flow soon transforms the little mound you made with your finger into a flow-
molded bed form.  The flow disturbance caused by this bed form scours the bed 
just downstream, and piles up enough sediment for another bed form to be 
produced, and so on until a beautiful widening train of downstream-growing bed 
forms is formed (Figure 12-3).  Trains of bed forms like this, starting from various 
points on the bed, soon join together and pass through a complicated stage of 
development, finally to become a fully developed bed configuration (Figure 12-
2B).  The stronger the grain transport, the sooner the bed forms appear, and the 
faster they approach equilibrium.  These bed forms, which I will later classify as 
ripples, show generally triangular shapes in cross sections parallel to the flow.  

21  At this point I should introduce some terms for the geometry of ripples 
and other bed forms of similar shape; see Figure 12-4.  The region around the 
highest point on the ripple profile is the crest, and the region around the lowest 
point is the trough.  The upstream-facing surface of the ripple, extending from a 
trough to the next crest downstream, is the stoss surface, and the downstream-
facing surface, extending from a crest to the next trough downstream, is the lee 
surface.  A well defined and nearly planar segment of the lee surface, called the 
slip face, is usually a prominent part of the profile.  The top of the slip face is 
marked by a sharp break in slope called the brink.  There is often but not always a 
break in slope at the base of the slip face also.  The top of the slip face is not 
always the highest point on the profile, and the base of the slip face is not always 
the lowest point on the profile.   
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Figure 12-4.  Terminology for ripple geometry in flow-parallel profile. 
 
 
22  The stoss surfaces of ripples are gently sloping, usually less than about 

10° relative to the mean plane of the bed, and their lee surfaces are steeper, 
usually at or not much less than the angle of repose of the granular material in 
water.  Crests and troughs are oriented dominantly transverse to the mean flow 
but are irregular in detail in height and arrangement.  The average spacing of 
ripples is of the order of 10–20 cm, and the average height is a few centimeters.  
The ripples move downstream, at speeds orders of magnitude slower than the 
flow itself, by erosion of sediment from the stoss surface and deposition of 
sediment on the lee surface. 

23  The field of ripples is commonly three-dimensional, rather than two-
dimensional as it would be if the ripples were regular and straight-crested.  (This 
terminology has the potential to be confusing.  It is common in fluid dynamics to 
apply the term two-dimensional to any feature that looks the same in all flow-
parallel cross sections.  That is true for perfectly regular ripples, with straight, 
flow-normal crests and troughs that are of the same height all along the ripple.)  
Most current ripples show great variability in their pattern of crests and troughs, 
as well as in crest heights and trough depths. 

 
Dunes: 

24  At a flow velocity that is a moderate fraction of a meter per second, 
ripples are replaced by larger bed forms usually called dunes (Figure 12-2C).  
Dunes are fairly similar to ripples in geometry and movement, but they are at least 
an order of magnitude larger.  The transition from ripples to dunes is complete 
over a narrow range of only a few centimeters per second in flow velocity.  
Within this transition the bed geometry is complicated:  the ripples become 
slightly larger, with poorly defined larger forms intermingled, and then abruptly 
the larger forms become better organized and dominate the smaller forms.  With 
increasing flow velocity, more and more sediment is transported over the dunes as 
suspended load.  If your flume is large enough, the dunes become large enough 
under some conditions of sand size and flow velocity for smaller dunes to be 
superimposed on larger dunes.   
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Plane Bed: 

25  With further increase in flow velocity the dunes become lower and more 
rounded, over a fairly wide interval of flow velocity, until finally they disappear 
entirely, giving way to a planar bed surface over which abundant suspended load 
as well as bed load is transported (Figure 12-2D).  Judging from the appearance of 
the bed after the flow is abruptly brought to a stop, the transport surface is very 
nearly planar, with relief no greater than a few grain diameters, although this 
subtle relief, reflecting the existence and movement of very low-relief bed forms, 
is thought by some to be responsible for the generation of planar lamination under 
conditions of net aggradation of the bed (see Chapter 16).  Because the bed is 
obscured by abundant bed load and suspended load, it is difficult to observe the 
mode of grain transport over the planar bed except through the sidewall of the 
flume. 

 
Antidunes: 

26  As the flow velocity is increased still further, subdued standing waves 
appear on the water surface, and the resulting pattern of higher and lower near-
bed flow velocity causes the bed to be molded correspondingly into a train of 
waves that are in phase with the water-surface waves.  Under certain conditions 
these coupled bed waves and surface waves increase in amplitude and become 
unstable:  they move slowly upstream and at the same time grow in amplitude, 
until they become so steep that they break abruptly, throwing much sediment into 
suspension (Figure 12-2E).  The bed and the water surface then revert to a planar 
or nearly planar condition, whereupon the waves build again and the cycle is 
repeated.  Because of their upstream movement these forms are called antidunes, 
so named by G.K. Gilbert (1914) in his pioneering flume experiments on 
sediment transport and bed configurations.   

27  In an approximate way, the condition for development of antidunes is 
that the upstream speed of propagation of surface water waves is about the same 
as the mean velocity of flow, so that the surface water waves have only a small 
speed relative to the channel bottom.  The speed of shallow-water surface waves 
is well known to be (gd)1/2 (see Chapter 6), where g is the acceleration of gravity 
and d is the water depth.  The condition for development of antidunes is therefore 

 
U ≈ (gd)1/2          (12.1) 

 
or, dividing both sides by the right side to make the terms dimensionless, 

 
U

(gd)1/2   ≈ 1          (12.2) 
 

So conditions are favorable for the development of antidunes when the mean-flow 
Froude number approaches one.  Of course, there must be an underlying 
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instability in the first place to make the antidunes grow in amplitude when in-
phase bed waves develop under the water-surface waves.     

28  An instructive variation on your exploratory flume experiment is to 
increase the flow depth by a factor of two and cover the entire flow with a rigid 
planar sheet parallel to the mean plane of the bed.  The flow structure in the lower 
half of the closed duct formed in this way is very nearly the same as that in the 
original open-channel flow (before surface waves set in), except for some 
differences in the largest-scale eddies in the outer layer owing to the possibility of 
large eddies making their way across the center plane of the flow, in the case of 
the closed duct.  Now make the same sequence of runs with the top cover in place.  
You would find the same succession of bed configurations (Figure 12-5) except 
for one major difference:  standing waves and antidunes would not appear, and 
plane-bed transport would be observed up to indefinitely high flow velocities.  
This demonstrates that the dynamics of antidunes is unrelated to the dynamics of 
ripples, dunes, and  plane bed:  antidunes are dependent upon the presence of the 
free surface, whereas ripples and dunes are independent of the presence of the free 
surface.  

 

 
Figure 12-5.  Sequence of bed phases as a function of flow velocity over medium 
sand in a closed conduit. 
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Dimensional Analysis  
29  Now for a list of the most important variables associated with the fluid, 

the sediment, and the flow that define the bed state.  Once we know the important 
variables, we can then develop a useful corresponding set of dimensionless 
variables and plot the positions of bed states observed in the laboratory and in 
natural flows in a graph with these dimensionless variables along the axes, to 
identify the fields or regions of existence or stability of the various bed phases.  
Although that does not address the dynamics behind the various bed phases—a 
fascinating and complicated matter, about which the last word is nowhere near 
having been said (see a later section in this chapter)—it provides a useful basis for 
paleoflow interpretations on the part of sedimentary geologists who work with the 
ancient sedimentary record, because the various bed configurations are commonly 
preserved in the record at least partly intact. 

30  As is usual for work with real sediments in nature, even for equilibrium 
bed states in steady flows the number of variables is depressingly infinite, because 
an infinite number of variables are needed to describe the joint probability 
distribution of sediment density, grain size, and grain shape that is associated with 
any natural sediment.  To obtain useful results we have to make some simplifying 
assumptions.  We will assume that the sediment has only a single density and 
fairly equant particle shape, is subangular to subrounded rather than highly 
angular or perfectly well rounded, and is moderately well sorted but not unisize.  
Those assumptions might seem overly restrictive, but they describe most natural 
sands and fine gravels rather well:  most natural sediments have densities not 
much different from that of quartz and are of approximately equant grain shape.  
Then the sediment can be characterized fairly well by just the average size D and 
the density ρs.  Ignoring the size distribution is not as good an assumption; we 
should include the sorting σ in the analysis, but few studies have been made on 
the effect of sorting on bed configuration.  The submerged weight per unit volume 
γ ' of the sediment must be included in addition to ρs to take account of particle 
weight as well as particle inertia.   

31  As usual, ρ and μ are needed to characterize the fluid.  Two variables 
are needed to describe the flow:  a flow-strength variable, and the flow depth d.  
Keeping in mind the discussion of flow variables in Chapter 8, we will first use U, 
which will lead to an unambiguous description in a three-dimensional graph, and 
then τo, which will lead to a two-dimensional graph with considerable 
overlapping of phase fields, although we will see that with an appropriate method 
for drag partition, to separate the skin friction from the total bed shear stress, a 
much better two-dimensional representation is possible. 

32  Using first U as the flow-strength variable,  
    

bed state = f(U, d, D, ρ, μ, γ ', ρs)       (12.3) 
 

By dimensional analysis the seven variables chosen in an earlier section as being 
the most natural in characterizing the bed state can be grouped into four 
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dimensionless variables that equally well characterize the bed state, in the sense 
that to every combination of the four dimensionless variables there is one and 
only one dimensionless bed state.  Many such sets of dimensionless variables, all 
equivalent, are possible.  Perhaps the simplest set, and certainly the most 
meaningful in terms of the physics of the flow, is the mean-flow Reynolds 
number ρUd/μ, a mean-flow Froude number ρ1/2U/(γ 'd)1/2 written using γ ', the 
relative roughness d/D, and the density ratio ρs/ρ.  Another set, more useful 
sedimentologically in that it segregates U, d, and D into separate variables 
(Southard 1971; Harms et al. 1982; Southard and Boguchwal 1990), is  

 
Dimensionless flow depth do = d(ργ '/μ2)1/3 

Dimensionless flow velocity Uo = U(ρ2/μγ ')1/3     

Dimensionless sediment size Do = D(ργ '/μ2)1/3 

Density ratio ρs/ρ        (12.4) 

 

 
 

Figure 12-6.  The depth–velocity–size diagram for unidirectional-flow bed 
phases, showing three depth–velocity sections and one velocity–size section. 

 
 
33  For a given density ratio ρs/ρ, data on bed states obtained for 

equilibrium flume runs in steady uniform flow and for field observations in flows 
thought to be reasonable approximations to steady uniform flow can be plotted in 
a three-dimensional graph with do, Uo, and Do along the axes (Figure 12-6).  I 
will call this three-dimensional graph the dimensionless depth–velocity–size 
diagram.  Each bed state that is observed in a flume or in a natural flow can be 
viewed as one of an infinite number of realizations of a single dimensionless bed 
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state.  The corresponding dimensionless depth do, dimensionless velocity Uo, and 
dimensionless sediment size Do for that dimensionless bed state can be computed 
from the given data on d, U, D,  ρ, and μ and plotted in the graph.  The stability 
fields for the various bed phases occupy certain volumes (three-dimensional 
regions) in this graph, and the volumes should fill space exhaustively and non-
overlappingly.  Boundaries between bed phases are three-dimensional surfaces or 
transitional zones.  The graph has to be in three dimensions, but you can see its 
nature fairly well by making two-dimensional sections through it.  Such a graph is 
loosely analogous to the phase diagrams that petrologists use to represent the 
thermodynamic equilibrium of mineral phases.  Bed-phase stability graphs are a 
good way of systematizing and unifying disparate data on bed states in a wide 
variety of flows and sediments.   

34  By virtue of the role of fluid density and fluid viscosity in the 
dimensional analysis on which the dimensionless variables in Equations 12.4 are 
based, the dimensionless depth–velocity–size diagram is implicitly standardized 
for water temperature.  It is therefore possible to label the axes of the graph in an 
alternative way by using depths, velocities, and sizes referred to some arbitrary 
hypothetical water temperature.  In compiling literature data for a depth-velocity-
size diagram, I chose a reference temperature of 10°C as being reasonably 
representative of a wide range of natural subaqueous environments with flow-
generated bed configurations in sands; otherwise there is nothing special about it.  
Using Equations 12.4 I computed from the original data the values of the 10°C 
depth d10, the 10°C velocity U10, and the 10°C size D10 for a flow of 10°C water 
dynamically equivalent to the actual flow, in the sense that it corresponds to the 
same set of values of do, Uo, and Do.  This is easily done (Southard and 
Boguchwal, 1990) for each variable by formulating the dimensionless value both 
from the given conditions and from the 10°C conditions, setting the two equal, 

  
do = d 

⎝
⎜
⎛

⎠
⎟
⎞ργ '

μ2  
1/3

 = d10⎝
⎜
⎛

⎠
⎟
⎞ρ10γ '10

μ102  
1/3 

Uo = U
⎝
⎜
⎛

⎠
⎟
⎞ρ2

μγ '  
1/3

 = U10⎝
⎜
⎛

⎠
⎟
⎞ρ102

μ10γ '10
 
1/3         (12.5) 

Do = d
⎝
⎜
⎛

⎠
⎟
⎞ργ '

μ2  
1/3

 = D10⎝
⎜
⎛

⎠
⎟
⎞ρ10γ '10

μ102  
1/3

 

and then solving for the 10°C value on the assumption that the slight variation of 
ρ with temperature can be neglected (the error being by a factor of only 1.003 
even for 30° water): 
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d10 = d 
⎝
⎜
⎛

⎠
⎟
⎞μ10

μ  
2/3

 

U10 = U
⎝
⎜
⎛

⎠
⎟
⎞μ10

μ  
1/3       

(12.6) 

D10 = D
⎝
⎜
⎛

⎠
⎟
⎞μ10

μ  
2/3

 

35  In the rest of this chapter, depth, velocity, and sediment size referred to 
10°C water temperature in this way are called 10°C-equivalent depth, velocity, 
and sediment size.  Note in Equations 12.5 and 12.6 that because the factor in 
parentheses on the right side of the equations is raised to the 2/3 power for d and 
D but to the 1/3 power for U, a change in water temperature and therefore μ/ρ 
produces a greater change in effective flow depth and sediment size than in 
effective flow velocity.   

36  The dimensionless depth–velocity–size diagram presented in a later 
section from literature data was drawn by computing do, Uo, and Do for all the 
data points and plotting those points in a three-dimensional graph with do, Uo, and 
Do along the axes.  But then the three axes were converted to the 10°C-equivalent 
quantities d10, U10, and D10 by the procedure outlined above.  The interior of the 
graph remains unchanged, but the graph becomes more useful by providing a 
concrete representation of depths, velocities, and sediment sizes.  The values of 
do, Uo, and Do associated with any point in the graph can be obtained using 
Equations 12.5.  Figure 12-7 allows easy conversion between actual values of 
depth, velocity, and sediment size and dimensionless depth, velocity, and 
sediment size for two water temperatures, 0°C and 30°C.     

37  If you want to use the dimensionless depth–velocity–size diagram to 
find the depth, velocity, and size of a bed state at some water temperature other 
than 10°C that corresponds to a certain point (i.e., a certain dimensionless bed 
state) in the diagram, you have to use Equations 12.6 in reverse: 

d = d10⎝
⎜
⎛

⎠
⎟
⎞μ

μ10
 
2/3 

U = U10⎝
⎜
⎛

⎠
⎟
⎞μ

μ10
 
1/3                            

(12.7)
 

D = D10⎝
⎜
⎛

⎠
⎟
⎞μ

μ10
 
2/3

 

Because the particular bed state and the corresponding hypothetical 10°C bed 
state are rigorously similar (geometrically, kinematically, and dynamically), 
dependent variables with the dimensions of length, like bed-form height or 
spacing, are in the same ratio between the two states as d/d10 or D/D10, found 
from Equations 12.5, 12.6, or 12.7 to be  

 
d

d10
  = 

⎝
⎜
⎛

⎠
⎟
⎞μ

μ10
 
2/3       

(12.8) 
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and dependent variables with the dimensions of velocity, like the speed of bed-
form movement, are in the same ratio between the two states as U/U10, found 
likewise from Equations 12.5, 12.6, or 12.7 to be  

 
U

U10
  = 

⎝
⎜
⎛

⎠
⎟
⎞μ

μ10
 
1/3       

(12.9) 

 
 

 
Figure 12-6.  Graph for converting between actual flow depth, flow velocity, and 
particle size, and dimensionless flow depth, flow velocity, and particle size. 
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38  It is difficult for the mind to translate values for dimensionless flow 
depth, flow velocity, and sediment size into real combinations of flow and 
sediment.  In water flows on the Earth’s surface, with water temperatures from  
0°C to 30°C and a range of actual flow depths from 0.01 m to 10 m, 
dimensionless flow depth ranges from about 102 to almost 106.  Likewise, in the 
same range of water temperature, for actual flow velocities from 0.1 m/s to a few 
meters per second, dimensionless flow velocity ranges from about 5 to about 150, 
and for actual sediment sizes from a few hundredths of a millimeter to a few 
centimeters, dimensionless sediment size ranges from about 0.5 to about 750. 

 
Hydraulic Relationships  

D epth–Velocity–Size Diagram 
39  Figures 12-8, 12-9, 12-10, and 12-11 show what the depth–velocity–size 

diagram for quartz sand in water looks like, on the basis of laboratory experiments 
made by many investigators.  The experiments have been made mainly at flow 
depths less than a meter.  It is much more difficult to obtain data points from 
deeper natural flows, and none are included in these figures; see below for further 
discussion of bed configurations in deeper flow depths.   
40  I have labeled the axes in Figures 12-8 through 12-11 not with the 
dimensionless variables but with the actual values of flow velocity U, flow depth 
d, and sediment size D that correspond to the respective dimensionless variables 
for an arbitrary reference water temperature of 10°C.  This provides a concrete 
feeling for flow and sediment conditions while preserving the interior features of 
the dimensionless graph.  Ignoring the water temperature would lead to 
considerable scatter in the data points, and would obscure the strong regularities 
shown by the dimensionless diagram.   

41  Figures 12-8 and 12-9 show three depth–velocity sections for sediment 
sizes of 0.10–0.14 mm, 0.40–0.50 mm, and 1.30–1.80 mm.  Figure 12-8 shows 
data points from many experimental studies, and Figure 12-9 is a schematic 
version of Figure 12-8.  Figures 12-10 and 12-11 show a velocity–size section for 
a flow depth of 0.25–0.40 m.  Figure 12-10 shows data points, and Figure 12-11 is 
a schematic version.  Figures 12-8 through 12-11 are from Boguchwal and 
Southard (1990). 

42  The section for 0.10–0.14 mm sand (Figures 12-8A, 12-9A) shows fields 
only for ripples, upper-regime plane bed, and antidunes.  All the boundaries here and 
in the other two graphs in Figures 12-8 and 12-9 slope upward to the right.  The 
boundary between ripples and plane bed slopes in that sense because the deeper the 
flow the greater the velocity needed for a given bed shear stress.  The boundary 
between plane bed and antidunes slopes in that sense because it is well represented by 
the condition that the Froude number U/(gd)1/2 is equal to one, as discussed above.  
The latter boundary is shown to truncate the former, because (though data are scanty) 
as the Froude number approaches one, antidunes develop irrespective of the 
preexisting configuration.  This relation holds true also, and more clearly, for coarser 
sediments (Figures 12-8B, 12-8C, 12-9B, 12-10C).   
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Figure 12-8 (previous page, left column).  Bed phases in graphs of mean flow 
depth vs. mean flow  
 
 
Figure 12-9 (previous page, right column.  Schematic versions of the graphs in 
Figure 12-8. 
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Figure 12-10 (upper).  Bed phases in a graph of mean flow velocity vs. mean 
sediment size, for a mean flow depth of 0.25–0.40 m. 
 
Figure 12-11 (lower).  Schematic version of the graph in Figure 12-10. 
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43  Figure 12-8A (and Figure 12-8B, for medium sands, as well) show two 
kinds of boundary between movement and no movement.  To the right is the 
curve for incipient movement on a plane bed, and to the left is the boundary that 
defines the minimum velocity needed to maintain preexisting ripples at 
equilibrium.  It is clear that the latter boundary lies to the left of the former, but 
the existing data are not good enough to define the positions of these boundaries 
well.  (Only the former boundary is shown in Figures 12-8A and 12-9B.)   

44  The section for 0.40–0.50 mm sand (Figures 12-8B, 12-9B) shows an 
additional field for dunes between the fields for ripples and for plane bed.  The 
boundary between dunes and plane bed clearly slopes less steeply than the 
boundary between ripples and dunes.  For depths less than about 0.05 m it is 
difficult to differentiate between ripples and dunes, because dunes become 
severely limited in size by the shallow flow depth.  The appearance and expansion 
of the dune field with increasing sediment size pushes the lower termination of 
the plane-bed field to greater depths and velocities, nearly out of the range of 
most flume work.  The antidune field truncates not only the ripple field, as with 
finer sands, but the dune field as well.   

45  In the section for 1.30–1.80 mm sand (Figures 12-8C, 12-9C), a lower-
regime plane bed replaces ripples at low flow velocities.  Upper-regime plane bed 
is still present in the upper right, but few flume data are available.  Upper-regime 
plane beds succeed antidunes with increasing velocity and decreasing depth in the 
lower right; apparently the bed becomes planar once again as the Froude number 
becomes sufficiently greater than one.  The left-hand boundary in Figures 12-8C 
and 12-9C represents the threshold for sediment movement on a plane bed.  
Sections for even greater sediment size are qualitatively similar to the section 
shown in Figures 12-8C and 12-9C.  

46  In the velocity–size section for flow depths of 0.25–0.40 m (Figures 12-
10, 12-11), ripples are the stable bed phase for sediment sizes finer than about 0.8 
mm.  The range of flow velocity for ripples becomes narrower with increasing 
sediment size, and the ripple field finally ends against the fields for plane beds 
with or without sediment movement.  Relationships in this region are difficult to 
study because in these sand sizes and flow velocities a long time is needed for the 
bed to attain equilibrium.  In medium sands ripples give way abruptly to dunes 
with increasing flow velocity, but, in finer sediment, ripples give way (also 
abruptly) to plane bed.  Although not well constrained, the ripple–plane boundary 
rises to higher velocities with decreasing sediment size.   

47  Dunes are stable over a wide range of flow velocities in sediments from 
medium sand to indefinitely coarse gravel.  Both the lower and upper boundaries 
of the dune field rise with increasing flow velocity, and both are gradual 
transitions rather than sharp breaks.  For sediments coarser than about 0.8 mm 
there is a narrow field below the dune field for lower-regime plane bed; the lower 
boundary of this field is represented by the curve for threshold of sediment 
movement on a plane bed.    

48  There is one triple point among ripples, dunes, and upper plane bed at a 
sediment size of about 0.2 mm, and another among ripples, dunes and lower plane 
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bed at a sediment size of about 0.8 mm.  The coverage of data around these two 
triple points constrains the bed-phase relationships fairly closely.  Between these 
two triple points the dune field forms a kind of indented salient pointing toward 
finer sediment sizes.  The boundary between ripples and upper plane bed seems to 
pass beneath the dune field at the upper left triple point to emerge again at coarser 
sediment size and lower flow velocity as the boundary between ripples and lower 
plane bed at the lower right triple point. 

49  Other velocity–size sections, for other flow depths, show the same 
qualitative relationships as Figures 12-10 and 12-11.  With increasing flow depth 
the lower boundary of the antidune field rises very rapidly, and antidunes are 
unimportant in flows greater than a few meters deep.  All the other boundaries 
rise more slowly with increasing flow depth.  There is also some change in the 
shape of the dune field with increasing flow depth.   
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Figure 12-12.  Schematic depth–velocity–size diagram showing bed-phase 
stability field for bed phases in steady unidirectional water flows with a wide 
range of flow depths in flumes and natural environments.  (From Rubin and 
McCulloch, 1980.) 
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50  Numerous observations of bed configurations in natural environments in 
which sands are subjected to fairly steady unidirectional flows indicate that the 
stability relationships of bed configurations in deeper flows are a straightforward 
extrapolation of the depth–velocity–size diagram discussed above.  Ripples are 
almost the same in shallow flows and deep flows, but dunes in deep flows are 
much larger than dunes in shallow flows.  Figure 12-12, after Rubin and 
McCulloch (1980), shows an extrapolation of the depth–velocity–size diagram to 
much greater flow depths based on data from several studies in natural flow 
environments. 

51  There must be a definite average dune height and spacing associated 
with each point in the existence field for dunes in the depth–velocity–size 
diagram.  Unfortunately, few experimental studies have reported dune dimensions 
systematically.  Figures 12-13 and 12-14 make use of data on dune spacings and 
heights from the best data set, that of Guy et al. (1966), in a crude attempt to 
contour dune spacings and heights in the depth–velocity–size diagram.  Figures 
12-13A and 12-13B show contours of dune spacing and height in a depth–velocity 
section for a sediment size of 0.30–0.40 mm, and Figures 12-14A and 12-14B 
show contours of dune spacing and height in a velocity–size section for a flow 
depth of 0.25–0.40 m. 

52  In the depth-velocity section (Fig. 12-13A), dune spacing increases from 
lower left to upper right, with increasing depth and velocity.  In the velocity-size 
section (Fig. 12-14A), dune spacing increases from lower right to upper left with 
increasing velocity and decreasing sediment size; the greatest spacings are at the 
upper-plane-bed boundary and a sediment size of between 0.2 and 0.3 mm.  Dune 
height shows a different and more complicated behavior.  In the depth–velocity 
section (Fig. 12-13B), dune height increases monotonically with increasing depth 
but shows an increase and then a decrease with increasing flow velocity at 
constant depth.  In the velocity–size section (Fig. 12-14B), there is an elongated 
core of greatest heights extending from near the left-hand extremity of the dune 
field, at the finest sizes of about 0.2 mm, rightward to sizes of 0.5 to 0.6 mm.  
Heights seem to decrease in all directions from that core, most rapidly with 
decreasing flow velocity. 

53  The sections in Figures 12-13 and 12-14 intersect each other at right 
angles at the dashed line shown on both sections.  You have to imagine the 
contours as cuts through a family of curved surfaces in three dimensions filling 
the dune field in the depth–velocity–size diagram. 
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Figure 12-13.  Contoured data on A) dune spacing and B) dune height from Guy 
et al. (1966) in a depth–velocity section for a range of sediment size of 0.30–0.40 
m, with bed-phase stability fields taken from Figure 12-8.  Symbols for dune 
spacing:  solid squares, < 0.5 m; open circles, 0.5–1 m; solid circles, 1-2 m; open 
triangles, 2-4 m; solid triangles, > 4 m.  Symbols for dune height:  open circles, < 
3 cm; solid circles, 3–6 cm; open triangles, 6–12 cm; solid triangles, > 12 cm.  
The dashed line shows the intersection of the sections represented by Figures 12-8 
and 12-10 in the depth–velocity–size diagram. 
 
Figure 12-14.  Contoured data on A) dune spacing and B) dune height from Guy 
et al. (1966) in a velocity–size section for a range of flow depths of 0.25–0.40 m, 
with bed-phase boundaries taken from Figure 12-10.  Symbols for dune spacing:  
open circles, < 1 m; solid circles, 1–2 m; open triangles, 2–4 m; solid triangles, > 
4 m.  Symbols for dune height:  open circles, < 3 cm; solid circles, 3–6 cm; open 
triangles, 6–12 cm; solid triangles, > 12 cm.  The dashed line shows the 
intersection of the sections represented by Figures 12-8 and 12-10 in the depth–
velocity–size diagram. 
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D iagrams with Bed Shear Stress 
54  So far we have looked at the hydraulic relationships of bed phases using 

the mean flow velocity U as the flow-strength variable.  Most investigators have 
chosen to use the bed shear stress τo rather than U.  What do the same 
relationships look like in graphs using the bed shear stress τo?  One thing we can 
say right away about such graphs is that the effect of flow depth is much less:  the 
effect of the substantial change in velocity with flow depth for a given bed shear 
stress is no longer relevant, and all that is left is the smaller effect on the bed shear 
stress of changes in bed-form geometry with flow depth.  A single suitably 
nondimensionalized two-dimensional graph of bed shear stress against sediment 
size should therefore be expected to represent bed states reasonably well.  Simons 
and Richardson (1966) seem to have been the first to use such a plot, although in 
the dimensional form of τo vs. D.  A later and more comprehensive of plots of this 
kind was given by Allen (1982, Vol. 1, p. 339–340), who plots Shields parameter 
and dimensionless (temperature-standardized) stream power against 
dimensionless (temperature-standardized) sediment size. 

55  Boundary shear stress can be nondimensionalized in various ways.  The 
conventional way is to form a dimensionless variable containing τo and D, namely 
τo/γ 'D, usually called the Shields parameter (see Chapter 9).  One can also work 
with a dimensionless form of the stream power τoU, on the theory that the 
sediment transport depends most fundamentally upon stream power.  Another 
alternative is τo(ρ/γ ' 2μ2)1/3, which I call here the dimensionless boundary shear 
stress To.  The disadvantage with To is that it does not embody the physics of the 
phenomenon nearly as well as the Shields parameter, but the advantage is that, 
when To is used with Do, τo and D do not appear together in the same 
dimensionless variable.  We will work with this last alternative, because it lends 
itself more directly to temperature standardization, which is important in the range 
of conditions for which Reynolds-number effects cannot be neglected, and also 
because sediment-size effects are thereby manifested entirely through the 
dimensionless sediment size D(ργ '/μ2)1/3.   

56  Figure 12-15 is a plot of To vs. Do showing the stability fields for the 
various bed phases.  The same data sources were used as for the depth–velocity–
size graph discussed above, except that fewer studies were used because some 
studies that reported the mean flow velocity did not report the energy slope, so τo 
could not be computed.  Only runs made at depths greater than 0.06 m were used.  
In all, 1204 runs were used.  10°C-equivalent flow depths d10 range from 0.06 m 
up to the deepest reported in the sources used, a little greater than 1 m (by Nordin 
1976).  Figure 12-16 is a schematic version of Figure 12-15.  

57  The value of τo for each run was corrected for sidewall effects by the 
method proposed by Vanoni and Brooks (1957).  (For a summary of this method, 
see Vanoni 1975, p. 152–154.)  The result is an estimate of the shear stress τob 
acting on the sediment bed only.  Because the bed is always rougher than the 
sidewalls (except for dynamically smooth flow over a planar granular bed), and 
the width/depth ratio is never infinite, this estimate of τob is always greater than 
the boundary shear stress averaged over the wetted perimeter of the flow, which is 
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found from the experimental data by use of the resistance equation for steady 
uniform flow in an open channel, τo = ρgAS/p, where A is the cross-sectional area 
of the flow and p is the wetted perimeter of the flow.  For bed states with rugged 
flow-transverse bed forms in flows with small width/depth ratios, τob can be 
almost half again as large as τo. 

58  The axes of the graph in Figure 12-15 are not labeled with To and Do 
but with D10 and (τob)10, the sidewall-corrected bed shear stress standardized to a 
water temperature of 10°C.  As with depth, velocity, and size in an earlier section, 
(τob)10 is related to τob by the equation 

 
(τob)10 = τob⎝

⎜
⎛

⎠
⎟
⎞μ10

μ  

2/3                                   
(12.10) 

 
obtained by equating values of To for 10°C and for the given conditions and 
solving for (τob)10 on the assumption that ρ and γ ' do not vary with temperature. 

59  Scatter or overlapping of points for different bed phases is much greater 
in Figure 12-15 than in the various sections through the dimensionless depth–
velocity–size diagram, for two main reasons:  

 
•  It is well known that because the form resistance, which is the dominant 

contribution to the total bed shear stress over rugged flow-transverse bed forms, 
disappears in the transition from ripples to upper plane bed or from dunes to upper 
plane bed, the total bed shear stress actually decreases with increasing mean flow 
velocity in these transitions before it increases again. For that reason, there is a 
certain range of τob for which three different values of U are possible; see Figure 
8-10, back in Chapter 8.  In a plot of τob against D, this means that there is an 
approximately horizontal band across the graph in which values of U, and thus 
also their associated bed phases, overlap or fold onto one another.  In Figure 12-
15 this is shown as a field of overlapping dunes, upper plane bed, and antidunes, 
labeled V, and a field of overlapping ripples, upper plane bed, and antidunes, 
labeled VI.  

•  Accurate measurement of water-surface slope S, and therefore τo, is 
understandably less accurate than measurement of U:  water-surface slopes are 
small, so long channels and careful surveying are needed, and in any case the 
slope varies with time around some long-term average as the details of the bed 
configuration fluctuate, so long time series of S are needed for good accuracy.  
These problems with the slope presumably affect all of Figure 12-15, but they are 
noticeable only at bed-phase boundaries that should not be affected by the shear-
stress ambiguity noted above, like the boundary between ripples and dunes or the 
boundary between lower plane bed and dunes. 
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Figure 12-15.  Bed phases in a dimensionless (temperature-standardized) plot of 
sidewall-corrected bed shear stress vs. sediment size for bed phases.  labels for regions:  
I, no movement on plane bed; II, ripples; III, lower plane bed; IV, dunes; V overlap 
region of dunes, upper plane bed, and antidunes; VI, overlap region of ripples, upper 
plane bed, and antidunes; VII overlap region of upper plane bed and antidunes. 
 

Figure 12-16.  Schematic version of Figure 12-15. 
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60  The effects of data scatter and phase-field overlap make partitioning 
Figure 12-15 into existence fields for the various bed phases not a straightforward 
matter.  The more straightforward results for the depth–velocity–size diagram 
were used as a guide in developing a rational partition.   

61  Because of the moderate degree of scatter of ripple and dune points, the 
boundary between ripples (Region II) and dunes (Region IV) can be located only 
in a general way.  The overall shape of the boundary was made qualitatively 
similar to that in the depth–velocity–size diagram (Figures 12-8 through 12-11).  
It is reasonable to suppose that this boundary continues downward past the 
question mark and then leftward to define the minimum shear stress for existence 
of ripples, as in Figures 12-10 and 12-11.  Because few investigators have 
attempted to identify the weakest flows for which preexisting ripples are 
maintained as flow strength is very gradually decreased while equilibrium is 
maintained, existing data are inadequate to define the position of this extension.  
Either the plane-bed threshold curve is eclipsed by the lower part of the ripple 
field, as in Figures 12-10 and 12-11, or the lower boundary of the ripple field is at 
bed shear stresses entirely above those for the plane-bed threshold curve.  The 
threshold curve itself is not extended leftward because of this uncertainty. 

62  Interpretation of the remaining boundaries is based upon the existence 
of a minimum sediment size of about 0.15–0.20 mm for existence of dunes, as 
shown clearly by left-pointing “nose” of the dune field in the velocity–size 
sections through the depth–velocity–size diagram together with the effect of the 
τo ambiguity on the relations among ripples, dunes, and plane beds.  As in the 
velocity–size sections through the depth–velocity–size diagram, the ripple–dune 
boundary in Figure 4-17 is interpreted to pass leftward through an inflection point 
and then curve upward and again rightward, passing through the sediment-size 
minimum for dunes, to become the upper limit of dune stability (between Regions 
V and VII).   

63  Owing to the shear-stress ambiguity there is a substantial range of shear 
stresses below this upper boundary for dunes for which either dunes or plane bed 
can exist.  The lower limit of this overlap region (Region V) is shown  as a 
straight line sloping downward to the left.  Neither the shape nor the position of 
this line is well constrained by the data.  By its nature, this boundary must end 
leftward at the minimum sediment size for the existence of dunes; it is therefore 
connected upward to the point of minimum sediment size by a vertical dashed 
line.  In the small unlabeled region with approximately triangular shape (bounded 
below by this lower limit of upper-plane-bed stability, above by the upper limit of 
ripple stability, and to the left by the leftward limit of dune stability), ripple and 
dune points overlap. 

64  To the left of the minimum sediment size for dunes, ripple pass directly 
into upper plane bed with increasing flow strength, and again there is a broad 
region of overlap of ripples and upper plane bed (Region VI).  In this region the 
vertical span of the overlap region is about as great as the span of available data, 
so the two boundaries sloping downward to the right here (the upper showing the 
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maximum shear stresses for existence of ripples, and the lower showing the 
minimum shear stresses for existence of plane beds) are poorly constrained.  The 
slopes of these lines were chosen only by analogy with that of the boundary 
between ripples and upper plane bed in the velocity–depth sections of the depth–
velocity–size diagram; both their slope and their parallelism are arbitrary. 

65  The upper of these two boundaries, giving the upper limit for ripples, is 
shown to end at the sediment-size minimum for dunes (i.e., the point of vertical 
tangent at the leftward extremity of the dune field), although this is not a 
necessity:  the intersection could just as well lie somewhat above or somewhat 
below that point.  In any case, the second of these boundaries, representing the 
lower limit for existence of upper plane beds, must terminate rightward at the 
same sediment size—hence the vertical dashed line connecting the two 
boundaries.  Because the intersection should not be expected to be exactly at the 
minimum sediment size for dunes, this vertical dashed line should actually be at a 
slightly different and greater sediment size from the vertical dashed line, 
mentioned above, that connects the two analogous curves for dunes at greater 
sediment sizes.  So there must really be two vertical dashed lines, very close 
together. Existing data, extensive as they are, are inadequate to locate the two 
corresponding sediment sizes with certainty, and they are shown as a single 
vertical dashed line in Figure 12-15. 

66  Points for antidunes appear throughout Regions VI and VII and in the 
upper part of Region V in Figure 12-15.  Presumably the reason there is no 
boundary between upper plane bed and antidunes in what is labeled as Region VII 
in Figure 12-15 is that the transition from upper plane bed to antidunes with 
increasing flow velocity at the flow depths characteristic of many flume 
experiments takes place at bed shear stresses well below those of Region VII.   

67  The consequences of lumping all flow depths into the single plot 
represented by Figure 12-15 are substantial only for antidunes, because the onset 
of antidunes depends upon the mean-flow Froude number.  Plots of (τob)10 vs. 
D10 for the individual depth categories used in plotting the depth–velocity–size 
diagram show a systematic, although still scattered, rise in the position of the 
minimum shear stresses for antidunes as flow depth increases.  Other effects of 
flow depth on the positions of the various boundaries in (τob)10–D10 plots are so 
minor as to be swamped by the data scatter. 
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Figure 12-17.  Dimensionless (temperature-standardized) plot of sidewall-
corrected bed shear stress vs. sediment size for a narrow range of sediment sizes 
from the data of Willis et al. (1972) to show more clearly the details of the left-
hand part of Figure 12-15.  Symbols:  solid circles, upper plane bed; bull’s-eye 
circles, antidunes; open circles, ripples. 
 
Figure 12-18.  Dimensionless (temperature-standardized) plot of sidewall-
corrected bed shear stress vs. mean flow velocity from the data of Willis et al. 
(1972).  Symbols are the same as in Figure 12-17. 
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68  The welter of overlapped points for ripples, upper plane bed, and 
antidunes for sediment sizes around 0.12 mm, mostly from the work of Willis et 
al. (1972), is difficult to distinguish in Figure 12-15, so all the runs made in that 
study for which slope was reported are replotted in Figure 12-17 with the 
sediment-size axis stretched relative to the shear-stress axis.  The straight lines 
represent the minimum shear stresses for ripples and the minimum shear stresses 
for upper plane beds, taken from Figure 12-15.  The thorough blending of points 
for the three phases is clear.  Figure 12-18, a plot of 10°C-equivalent bed shear 
stress against 10°C-equivalent mean flow velocity for those same points, shows 
why the points in Figure 12-17 are so scrambled.   Despite the considerable 
scatter, there clearly is first an increase, then a decrease, and then again an 
increase in shear stress with increasing velocity, as shown by the curve that 
represents very approximately the trend of the data points.  The range in shear 
stress between the local minimum and the local maximum in that curve, together 
with the inevitable scatter in the shear stresses themselves, is sufficient for 
substantial mixing of the points.  

69  The plot in Figure 12-15 could be transformed into a plot of Shields 
parameter against dimensionless sediment size, or into a plot of dimensionless 
flow power against dimensionless sediment size (neither of which is shown here), 
but with no obvious advantages for sedimentological interpretation.  These plots 
would be qualitatively different in certain ways from those presented by Allen 
(1982) because of the influence of the results from the depth–velocity–size 
diagram on our method of partitioning Figure 12-15. 

70  Van den Berg and van Gelder (1993) introduced a bed-phase stability 
diagram (Figure 12-19) based on boundary shear stress that in large part removes 
the difficulties discussed above.  The horizontal axis is the dimensionless 
sediment size used above, and the vertical axis is a Shields parameter modified in 
such a way that the bed shear stress is represented by the part generated by the 
particle roughness rather than the form drag associated with bed forms.  The 
strategy is to express the bed shear stress in terms of a Chézy coefficient (see 
Chapter 4) that is a function of the ratio of water depth to D90, the ninetieth-
percentile particle size.  This largely circumvents the dominance of form drag in 
the presence of rugged bed forms.  You can see from the diagram that there is 
much less ambiguity in partitioning of existence fields than in Figure 12-15, but 
there is still considerable overlap between dunes and upper plane bed, suggesting 
that the method for drag partitioning is still less than perfect.  Nonetheless, Figure 
12-19 is a great improvement over earlier existence diagrams based on bed shear 
stress. 
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Figure 12-19.  Existence fields for bed phases in a dimensionless plot of modified 
Shields parameter vs. dimensionless sediment size.  (From van den Berg and van 
Gelder, 1993.) 

 

 
F low Regimes 

71  This is the place to be more specific about the terms lower flow regime 
and upper flow regime I have used a few times already. Simons and Richardson 
(1963) proposed that bed phases be classified into a lower flow regime and an 
upper flow regime on the basis of the transition from the rugged ripple-like bed 
phases (ripples and dunes) formed at relatively low flow strengths and the less 
rugged bed phases (upper plane bed and antidunes) formed at high flow strengths 
(Figure 12-20A).  The motivation for this classification was not so much the sharp 
distinction in bed geometry in itself as the great decrease in flow resistance in 
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passing from the lower flow regime to the upper flow regime.  Geologists have 
found the distinction useful not only in terms of the differing bed geometry but 
also in terms of the consequent great difference in sedimentary structures 
produced:  with the minor exception of lower-regime plane beds, lower-regime 
conditions give rise to cross-stratified structures, whereas upper-regime 
conditions give rise mostly to planar lamination—although antidunes produce 
cross-stratification as well:  see Chapter 15.   

 

 
 

Figure 12-20.  Two ways of classifying bed phases into flow regimes.  A) 
Velocity–size diagram for a flow depth of about half a meter (See Figure 12-10) 
showing the customary division into an upper flow regime and a lower flow 
regime based on the transition from ripple and dune bed phases to upper plane bed 
or antidunes.  B) The same velocity–size diagram showing an alternative division 
into a lower group of bed phases (lower plane bed ripples, dunes, and upper plane 
bed) whose dynamics are independent of the presence of a free surface and an 
upper bed phase (antidunes) whose dynamics are dependent upon the presence of 
a free surface. 

 
 
72  In terms of bed-configuration dynamics, it is also natural to divide bed 

phases into two groups in a different way on the basis of the importance of a free 
surface (Figure 12-20B).  Ripples, dunes, and plane bed are bed phases whose 
occurrence is independent of the existence of a free surface:  recall that in the 
exploratory flume experiments described earlier in this chapter the existence of 
ripples was not affected by placing a board over the water surface.  These bed 
phases could therefore be termed free-surface-independent bed phases.  
Antidunes, on the other hand, are dependent upon the existence of a free surface, 
and could therefore be termed a free-surface-dependent bed phase.  
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Flow over Ripples and Dunes  
73  Flow over ripples and dunes is dominated by flow separation, a 

phenomenon whereby the flow separates from the solid boundary in the region 
where the boundary curves away from the general upstream flow direction.  The 
general picture of separated flow over a ripple or a dune is shown in Figure 12-21, 
and in more cartoonlike form in Figure 12-22.  When the flow reaches the crest it 
continues to move in the  

 

 
Figure 12-21.  Flow structure over ripple or dune bed forms.  (Schematic, but not 
much vertical exaggeration.) 

 

 
 

Figure 12-22.  A version of Figure 4-23 that is less schematic but has some 
vertical exaggeration. 

 

 
same direction rather than bending downward to follow the contour of the bed.  
Strong turbulence develops along the surface of strong shear, called the shear 
layer, which represents the contrast between the high velocity in the separated 
flow and the low velocity in the shelter of the bed form.  This turbulence expands 
both upward and downward, and at some position downstream of the crest the 
turbulent shear layer meets the sediment bed.  The flow is said to reattach to the 
bed at that point.  Downstream of reattachment, the flow near the bed is directed 
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downstream once again.  Upstream of reattachment, in what is called the 
separation vortex, the bed feels a weak flow in the reverse direction.   

 

 
 

Figure 12-23.  A field trip on a dune. 
 

 
74  Take a tour of a ripple or dune profile by starting at a crest, sliding 

down the slip face, and then walking across the trough and up the stoss surface of 
the next bed form downstream (Figure 12-23).  The flow you would feel differs 
greatly along the profile.  With the appropriate equipment you could actually do 
this on a large dune in a river or a tidal current, or more easily on a subaerial dune 
when the wind is blowing.  Refer to Figures 12-21 and 12-22 as you read the next 
paragraph. 

75  As you move down the slip face and into the trough you would feel a 
weak, irregular, eddying current in the opposite direction.  Near the reattachment 
line you would feel the full effect of the turbulence in the shear layer.  In the 
reattachment zone the strong eddies generated in the shear layer impinge upon the 
bed and flatten out against it to cause temporarily very high local shear stresses.  
You would feel strong puffs or gusts of flow trying to push you this way and that.  
But even though the shear stress is high at certain points and certain times, it is 
nearly zero on the average.  As you continue to walk up the slope toward the next 
crest, the flow velocity and therefore the boundary shear stress would gradually 
increase, because the flow is crowded upward, but the intensity of the turbulence 
would lessen. 

 
Velocity Profiles over Ripples  

76  The material in the latter part of Chapter 4 on velocity profiles over 
rough beds is useful here in dealing with vertical profiles of time-average velocity 
over fields of ripple-shaped bed forms, large or small.  It is natural to think about 
such profiles in two different ranges of height above the bed:  well above the 
ripples, and close to the bed.  

77  Think first about the velocity profile above a plane parallel to the mean 
bed level and one to two ripple heights above the ripple crests.  Unless the ripple 
height is such a large fraction of the flow depth that the whole flow accelerates 
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and decelerates as it passes over the ripples, such a velocity profile is almost the 
same wherever it is taken, because at this height the upward-diffusing wake 
turbulence generated by flow separation at ripple crests is well blended spatially.  
In the following paragraphs we will use the adjective integrated for such profiles 
(cf. Paola, 1983).  These profiles characterize layers of the flow that blanket entire 
fields of bed forms without varying at the scale of those bed forms.   

78  First we need to do a little more with velocity profiles near the bed in 
dynamically rough flows, as a continuation of Chapter 4.  This additional material 
deals with the inner layer not far above the tops of the particles, which we skipped 
in Chapter 4. 

79  For sand-size bed roughness the lowermost part of the inner layer, not 
far above the tops of the grains, is not much more than a few millimeters thick, 
but for water flowing over gravels or for wind blowing over large ground-surface 
roughness it may be decimeters or even meters thick, and no sophisticated, 
miniaturized velocity meters are needed to include it in measured velocity 
profiles.  At positions this close to the bed there is a troublesome problem that we 
have avoided up to now:  where ia the origin for y?  It seems reasonable to 
suppose that the y  =  0 level lies somewhere between the bases and the tops of 
the surface particles.  A natural choice would be the average surface elevation—
the spatial average of the heights, normal to the mean plane of the bed, at which a 
solid surface is first encountered in descending onto the bed.  You will see, 
however, that this does not produce the best fit of velocity to Equations 4.41 or 
4.42 of Chapter 4.  And it is not a very practical choice anyway.  With close-
packed granular roughness, the plane through the tops of the grains (which itself 
is not very well defined) is usually taken as the y = 0 level for velocity 
measurements.  

80  For a given dimensionless distance y+ from the boundary, u/u* is not 
the same in rough and smooth flow, because the second term on the right side of 
Equation 4.39 always has a value different from B in Equation 4.34.  But the 
shape and slope of the velocity profile are the same:  if you differentiate Equation 
4.39 for the rough-flow velocity profile with respect to y, you get 

 
du
dy  = Au*

y            (12.11) 
 

which is exactly the same as Equation 4.33 for flow over a smooth bottom.  You 
might expect, however, that, at positions closer down to the tops of the grains, the 
grains have some effect on the shape as well as the position of the velocity profile, 
making the shape different from the smooth-flow case.  In other words, when y is 
not much greater than D, the velocity gradient depends not only on τo, ρ, and y 
but also on D:  

  
du
dy  = f(τo, ρ, y, D)         (12.12) 

  
or in dimensionless form,  
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u
u*

 du
dy  = f(D

y )         (12.13) 
 
81  It is convenient to extract the same constant A from the function on the 

right in Equation 12.13, so that the effect of proximity to the bed grains can be 
viewed as a correction function by which the right side of Equation 12.11 must be 
multiplied: 

 
du
dy  = Au*

y   f(D
y )        (12.14) 

 
82  There is no simple way of dealing with the physics behind the 

correction function f(D/y) in Equation 12.14.  The only thing we can say with 
certainty is that as y gets smaller (and D/y gets larger) the correction gets larger.  
To investigate the correction function further we can expand it as a power series 
in D/y (Monin and Yaglom, 1971; remember that any function can be 
approximated in this way by an appropriate power series.)  Equation 12.14 can 
then be written 

 
du
dy  = Au*

y   [1 + aD
y  +b(D

y )2+...]     (12.15) 
  
83  As the boundary is approached from above, and the correction gets 

larger, the term a(D/y), the dominant term while the correction is still small, gets 
less important relative to terms of higher order in D/y.  In the following we will 
consider only positions higher than one to two diameters above the tops of the 
roughness elements.  Measurements are seldom made closer to the bed anyway, 
because to get a representative value for the mean velocity a large number of 
profiles must be taken at different places relative to the roughness elements and 
then spatially averaged.)  To conform to the usual practice in dealing with the 
grain-proximity correction, we will recast Equation 12.15 into a slightly different 
form by introducing a new variable y-y1 for the vertical coordinate, where y1 is a 
small constant that’s in the same ballpark as D itself.  We also need the following 
algebraic identity: 

 
1
y  = ( 1

y-c )(y-c
y  ) = ( 1

y-c )(1-cy )     (12.16) 
  

where y is some variable and c is a constant.  Then, replacing 1/y in Equation 12-
15 with the right side of the identity above and letting the constant be y1, 

 
du
dy  = Au*

y-y1
 (1- y

y1)  [1+aD
y  +b(D

y )2+... ] 

      =Au*
y-y1

 (1-y1
y +aD

y +terms in 1
y2 etc.)        (12.17) 

  
Neglecting terms of order higher than 1/y on the right side, Equation 12.17 
becomes 
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du
dy  = Au*

y-y1 (1+aD-y1
y )        (12.18) 

  
84  We are at liberty to adjust the definition of y1 at the outset in such a way 

that y1  =  aD; then Equation 12-18 becomes 
 

du
dy  = Au*

y-y1
          (12.19) 

  
Equation 12.19 can be integrated in the same way as the rough-flow equivalent of 
Equation 4.33 in Chapter 4 to be in the same form as Equation 4.34, 

 
u
u*

  = A ln y-y1
D  + B'       (12.20) 

  
and Equation 12.20 can be manipulated into the same form as Equation 4.42 in 
Chapter 4, with yo and no separate constant of integration, 

 
u
u*

  = A lny-y1
yo

         (12.21) 
  

(For details see Middleton and Southard, 1984, Appendix 4.)  

85  Equations 12.20 and 12.21 are the conventional way of dealing with the 
correction function f(D/y) that appears in Equation 12.14.  Shifting the origin of 
the y coordinate by the small quantity y1 usually straightens out the velocity 
profile in a semilog plot down to positions not far above the tops of the roughness 
elements.  What is commonly done with wind-velocity profiles above the land 
surface is to take y = 0 at the base of the roughness elements—the ground on 
which the observer is standing—and then find the value of y1 which when 
subtracted from y gives the best straight-line fit of data to Equation 12.21.  The 
distance y1 (often denoted by d) is called the displacement height or the zero-
plane displacement.  The situation is a little different with close-packed granular 
roughness, which is of greater interest here:  usually the velocity profile is 
measured with respect to the tops of the grains, and then the apparent origin for y 
is lowered to produce the best straight-line fit to Equation 12.21.  (The plane 
through the tops of the grains is not ideally well defined, but it is impossible to 
define a dynamically natural plane that represents the bases of the grains in a full 
bed of loose sediment.)  So the value of y1 depends not only on the physics of the 
problem but also on the y origin chosen at the outset.  For a wide variety of 
roughness geometries, the distance y1 has been found to be between 0.2 and 0.4 
roughness diameters below the tops of the roughness elements (Jackson, 1981).  

86  The physical significance of the displacement height y1 has never been 
clear.  There is some experimental evidence that the height y1 above the origin is 
the level in the flow at which the boundary shear stress τo appears to act (Thom, 
1971).  The horizontal component of the force per unit area the flow exerts on its 
bed has not only a magnitude but also a line of action.  In other words, if we could 
measure τo with enough accuracy and detail we would find that it appears to act 
on some plane parallel to the bed.  (Presumably this plane would lie somewhere 
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between the bases and tops of the roughness elements.)  Choose an arbitrary plane 
above or below the bed and find the moment M per unit bed area associated with 
the force τo per unit bed area.  Dividing M by τo gives a quantity with the 
dimensions of length, and this length is just the distance above or below the 
arbitrary plane at which τo acts.  Jackson (1981) reasons that this distance is none 
other than the displacement height y1.     

87  Now, finally, back to velocity profiles over bed forms.  In the following, 
the subscript t denotes variables associated with the total bed shear stress, and the 
subscript s denotes variables associated with the skin friction.  If the flow depth is 
large relative to the ripple height the lower part of the integrated profile (and with 
little error the upper part also) is well described by Equation 12.21, the law of the 
wall for rough boundaries written here using the subscript t,  

 
u

(u*)t
  = A lny-(y1)t

(yo)t
          (12.22) 

 
88  The boundary shear stress (τo)t concealed in (u*)t in Equation 12.22 is 

the total shear stress the flow exerts on the rippled bed.  If you were to invent a 
good way of measuring pressure and viscous shear stress at every point on the 
bed, you would have to average over an area much larger than the scale of the 
ripples to get a representative value for (τo)t.  Most of (τo)t is form drag exerted 
on the ripples, not local stress exerted on the granular bed surface—called skin 
friction.  This latter skin-friction component of the total drag would be largely 
viscous drag, if flow in the immediate vicinity of the bed is dynamically smooth, 
or it may itself be largely form drag, if the flow in the vicinity of the bed is 
dynamically rough.  By analogy with the results in Chapter 4 for granular 
roughness, the roughness length (yo)t associated with the integrated velocity 
profile in Equation 12.22 is proportional to the height of the ripples and is a small 
fraction thereof, the exact value depending on the shape (and most importantly the 
steepness) of the ripples.  The displacement height (y1)t is such that the origin for 
the velocity profile lies somewhat below the ripple crests.  As the ratio of flow 
depth to ripple height decreases (but not to the point where there is no longer an 
integrated profile) it becomes more difficult to distinguish between inner and 
outer layers of the flow, but the wall-law representation is still a good 
approximation.  

89  Now look at the velocity profile near the bed at points on the stoss 
surface of a given ripple.  At points well downstream from reattachment the 
velocity profile near the bed follows the law of the wall also, because of the 
upward development of the internal boundary layer at the expense of the turbulent 
wake downstream of separation.  If the boundary Reynolds number based on the 
skin friction (τo)s and the local granular roughness height is larger than about 10 
the flow in the internal boundary layer is dynamically rough, and the velocity 
profile is given by  

 
u

(u*)s
  = A lny-(y1)s

(yo)s
         (12.23) 
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where (τo)s in the shear velocity (u*)s is a local boundary shear stress that can be 
viewed as averaged over an area that is large compared with the granular 
roughness but small compared with the ripples themselves.  We will use the 
adjective local for profiles of this kind, because they apply only to particular 
points on the ripple.  The profile in Equation 12.23 is characterized by values of 
roughness length (yo)s and displacement height (y1)s associated with the granular 
roughness, and both of these are smaller than the corresponding values associated 
with the integrated wall-law profile in Equation 12.22.  

90  If the local boundary Reynolds number is much smaller, less than about 
5, the local velocity profile is represented instead by the law of the wall for 
smooth flow, Equation 4.35 in Chapter 4, 

 

 u
(u*)s

  = A lnρ(u*)sy
μ   + B       (12.24) 

 
where B has a value of about 5.1, as noted in Chapter 4.  In this case the skin 
friction on the stoss surface of the ripple is mostly viscous drag rather than 
granular form drag.  At intermediate boundary Reynolds numbers the velocity 
profile is represented by the law of the wall for transitionally rough flow.  This 
can be put into the same form as the rough-flow profile, Equation 12.23, but with 
yn then a function of the local boundary Reynolds number as well as the 
roughness height, and the skin friction is partly viscous drag and partly form drag.  
Whether the local flow in the growing boundary layer is smooth or rough, 
however, (u*)s in Equations 12.23 or 12.24 is much smaller than (u*)t in Equation 
12-22, because whatever its nature the skin friction on the ripple surface is much 
smaller than the form drag on the ripples.  

91  The local wall-law profile varies with distance up the stoss surface:  as 
the flow in the internal boundary layer accelerates up the slope, the skin friction 
(τo)s increases, as does the height to which the profile is applicable.  You can be 
sure, however, that in a simple dimensional semilog plot with logy on the vertical 
axis and u on the horizontal axis the slopes of the straight lines that represent the 
local wall-law profile are always much greater than the slope of the single straight 
line for the integrated wall-law profile that holds well above the level of the crests 
of the ripples, because (u*)t is much larger than (u*)s; see Figure 12-24, which 
summarizes the relationship between the integrated profile and the local profile 
above a given point on the stoss surface of a ripple.  In between the regions of 
applicability of the local wall-law profile near the bed and the integrated wall-law 
profile well above the ripples is a complicated region of the flow in which the 
velocity grades from one profile to the other.  This region thins downstream along 
the stoss surface but is not consumed completely even when the flow reaches the 
next ripple crest downstream. 
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Figure 12-24.  Relationship between the integrated wall-law layer and the local 
wall-law layer developed over a dune bed. 

 

 
Figure 12-25.  Intermediate wall-law layer developed over a dune bed on which 
smaller dunes are superimposed on larger dunes.  The intermediate layer acts as 
an integrated layer with respect to the smaller dunes but as a local layer with 
respect to the larger dunes. 

 

 
92  Where small dunes are superimposed on much larger dunes, the 

foregoing line of reasoning can be taken a step further.  Large internal boundary 
layers develop on the stoss surfaces of the larger dunes in just the same way that 
small internal boundary layers develop on the smaller dunes.  The smaller dunes, 
of which there presumably are a great number on the stoss face of each larger 
dune, act as local roughness beneath the internal boundary layer that develops up 
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the stoss surface of each larger dune.  There is therefore a layer of the flow well 
above the crests of the smaller dunes but still well below the crests of the larger 
dunes in which the velocity follows an intermediate wall-law profile (Figure 12-
25).  This intermediate profile looks simultaneously like an integrated (although 
slowly varying) profile to a small observer stationed on one of the smaller dunes 
but like a local profile to a large observer stationed on one of the larger dunes.  
This profile is characterized by values of u*, yo, and y1 intermediate between 
those of the integrated profile over the large dunes and those of the local profile 
over the smaller dunes.  From the standpoint of the large dunes the intermediate 
value of u* represents a local boundary shear stress, so in a sense it is skin friction 
even though form drag predominates over viscous drag.  At the same time, the 
viscous drag and smaller-scale form drag associated with the sediment grains on 
the surfaces of the smaller dunes represent skin friction relative to the smaller 
dunes.  

93  The same ideas can even be extended to very large dunes (which many 
would call sand waves) on which two orders of smaller dunes with two greatly 
different scales are superimposed.  There are then two different intermediate 
layers of the flow, of the kind just described, each with its own wall-law profile 
characterized by its own set of values of u*, yo, and y1:  one that is local relative 
to the largest dunes (the sand waves themselves) but integrated relative to the 
larger superimposed dunes and one that is local relative to the larger 
superimposed dunes but integrated relative to the smaller superimposed dunes.  

94  You could take velocity profiles at a large number of points along the 
profile of one or more of the largest dunes present on the bed and average them all 
together to obtain a spatially averaged velocity profile.  In a sense this spatially 
averaged profile represents the entire flow.  Such averaging is not entirely 
satisfactory, for two reasons: 

 
•  Owing to growth of the internal boundary layer, the near-bed part of the 

velocity profile varies with position along the dune profile (even aside from the 
gross changes caused by separation and reattachment in the vicinity of the 
trough). 

•  Because the origin plane for the integrated wall-law region associated 
with dunes of a given order is parallel to the mean plane of the bed in the vicinity 
of those dunes, whereas the origin for the individual profiles is naturally taken at 
the bed surface itself, the base of the integrated wall-law profile is encountered at 
different heights in different places. The latter problem is not as serious as it 
seems, however, because at the height of even the lowest of such integrated wall-
law regions, points at rather different heights plot close to each other on a 
logarithmic vertical axis.  Provided that the ratio of spacing to height of the dunes 
of each order is large, so that separation bubbles occupy only a small fraction of 
the area of the bed, the spatially averaged profile in a semilog plot of height 
against velocity shows a series of straight-line segments connected by smooth 
transitions, just like the individual profiles—although the transitions are likely to 
be more gradual, for the two reasons noted above.  The values for boundary shear 
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stress obtained from these straight-line segments in the spatially averaged profile 
represent the spatial averages of the boundary shear stresses associated with each 
order of bed form present, ranging upward in scale from the grain roughness 
itself.  For further details on such spatially averaged velocity profiles over dunes, 
see Smith and McLean (1977). 

 
Sediment Movement over Ripples and Dunes   

95  The mode of sediment transport varies greatly from place to place over 
the ripple or dune profile.  A repetition of your traverse, this time to watch the 
sediment movement, would be instructive.  See Figure 12-26 for a key to the 
material discussed below.  Start at the reattachment zone, where the time-average 
bed-load transport rate is near zero.  Strong eddies in the reattaching shear layer 
impinge upon the bed to cause strong but sporadic grain transport.  At low mean-
flow velocities, sediment is shifted this way and that on the bed in local pulses 
that strike seemingly at random.  This is the site of first suspension of sediment as 
flow velocity gradually increases:  swirls of sediment are put into suspension in 
puffs and gusts, and then the grains either settle directly back to the bed or are 
dispersed up into the flow. 

 

 
Figure 12-26.  Modes of sediment movement over ripples or dunes. 

 
 

96  Downchannel from reattachment the pulses of movement are directed 
more and more consistently downchannel and gradually give way to more 
uniform grain movement up the stoss slope.  In the other direction they cease to 
be important just a short distance upchannel from reattachment, because flow in 
the separation vortex behind the bed form is relatively weak.  
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97  Particle movement up the stoss surface is much like that on a planar 
sediment bed:  it is in the form of isolated puffs at low mean-flow velocities, and 
in the form of a continuous sheet at higher velocities.  With increasing velocity 
the bed-load movement is obscured by sediment suspended from the trough or 
from upstream ripples.  Dunes often have ripples or even smaller dunes 
superimposed on their stoss slopes; this should not surprise you, because such bed 
forms develop wherever they have sufficient space and suitable flow conditions.  

98  At low flow velocities all of the sediment that is transported as bed load 
to the brink is deposited there.  This sediment tends to build the stoss surface 
forward over the top of the lee surface.  The sediment slips down the lee surface 
as a kind of grain flow to try to restore a stable angle of repose.  Grain flow is 
localized and sporadic when the rate of delivery is slow but widespread and 
continuous at higher flow velocities.  The result is a nearly planar slip face, with a 
break in slope not only at the top but also at the base, where the slip face builds 
forward onto the surface of the trough downstream.  

99  At higher flow velocities some fraction of the transported grains are 
carried beyond the crest above the separation surface, to settle through the 
complicated turbulent flow field in the wake of the ripple and land at various 
points (Figure 12-27):  on the slip face, in the trough, on the stoss surface of the 
next ripple downstream, or even on some ripple much farther downstream.  
Where the grains land depends on several factors:  the flow velocity, the settling 
velocity, the height of the grains above the bed as they pass over the brink, and 
which eddies the grains happen to fall through.  

 

 
 

Figure 12-27.  Trajectories of sediment particles passing through a given point 
(the “release point”) above the crest or a ripple or a dune. 

 
 
100  When the ripple geometry is three-dimensional, many troughs show no 

well defined separation vortex, and patterns of flow and sediment transport are 
not as simple as outlined above.  The bed surface near the base of the lee slope 
nonetheless usually feels flows that are much weaker than over the stoss slope, 
although these flows may have a substantial cross-stream component.  Transverse 
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flow in the lee of the dunes often makes ripples in troughs and on lee slopes, with 
crests oriented at a large and variable angle to the dune crests. 

 
The Movement of Ripples and Dunes   

101  Ripples and dunes move downstream, at speeds that are orders of 
magnitude slower than the flow speed, by erosion on the stoss surface and 
deposition on the lee surface.  It is surprisingly difficult to characterize this 
downstream movement, partly because the bed forms change their profiles with 
time but even more importantly because any given bed form has a finite lifetime:  
it is born, it moves, and it eventually dies, usually within a travel distance equal to 
only a small multiple of the bed-form spacing, something like 5–10 spacings.  The 
moderately regular arrangement of ripples in a still photograph is deceiving.  This 
section says some things about the nature and analysis of movement of ripples 
and dunes. 

102  A fundamental characteristic of ripples is that they move downstream 
at some velocity UB, by erosion on the stoss surface and deposition on the lee 
surface.  This velocity is of interest because 

 
 
•  it is an index of bed-load transport rate, because we have seen that most of 

the bed load moving on a ripple bed is cycled within the same ripple, and 
•  it is one of the determinants of the stratification geometry produced by 

ripple movement. 
 

   
This section addresses the measurement of UB, along with some results, and also 
its use in estimating sediment transport rates.  A discussion of its role in the 
geometry of sedimentary structures would take us too far afield; see papers by 
Allen (1970), Ashley et al. (1982), Rubin and Hunter (1982), and Harms et al. 
(1982, Chapter 3).  

103  It is surprisingly difficult to characterize the downstream movement of 
ripples.  If each ripple had an unchanging streamwise profile, UB would be both 
well defined and readily measurable.  Because most ripples have a fairly sharp 
break in slope at the brink, it is usually no problem to follow a distinguishable 
point on the profile as the ripple moves.  But the profile shape changes as the 
pattern of sediment transport over the ripple changes, even if the profile area stays 
the same.  This usually causes the position of the brink to change relative to the 
center of area of the ripple over just a short distance of movement, so even the 
position of a well defined point on the profile does not necessarily represent well 
the position of the ripple.  Moreover, the profile area of a ripple itself is changed 
by several processes, which can act concurrently: 

 
•  intensification of scour in a trough and deposition of the eroded sediment 

on the stoss surface or farther downstream; 
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•  transfer of sediment from one ripple to another by either bed-load transport 
or suspended-load transport; 

•  overriding of one ripple by the next ripple upstream; 
•  division of one ripple into two, as a new trough develops on the stoss 

surface of a ripple as a result of some change in upstream flow pattern. 
 

The last two processes imply that ripples do not live forever:  they come into 
being, move for some distance that is usually a small number of ripple spacings, 
and then disappear. 

 

 
 

Figure 12-28.  Histogram and cumulative curve of times for passage of two 
successive ripple crests past a fixed point, for 0.38 mm sand in a flow with mean 
flow depth 0.3 cm and mean flow velocity 29.2 cm/s.  (Data are from Southard et 
al., 1980.) 

 
 

104  A good way to apprehend the transitory existence of individual ripples 
is to generate a train of ripples in your flume and photograph them with a time-
lapse movie camera as they move downstream.  When you viewed the film at 
normal speed you would see the ripples doing all sorts of crazy things that are 
hard to appreciate by real-time viewing;  the moderately regular succession of 
ripples when viewed in a still picture is deceiving. Two other instructive things 
you could do are described in the following paragraphs.  

105  You might stock up on sandwiches and caffeine, occupy a station 
somewhere along the channel, and for a large number of ripples measure the time 
Tr needed for two successive ripple crests to pass the station.  After getting some 
rest you could then plot a cumulative distribution of Tr.  (When multiplied by the 
spacing of the passing ripple, the inverse of Tr is a good representation of UB.)  
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Figure 12-28, measured by Southard et al. (1980), is such a curve.  Note the wide 
range in passage times. It was found that hundreds of ripples would have had to 
be measured to obtain a stable cumulative curve, although substantially fewer 
were sufficient for a stable mean value. 
 

  
 
Figure 12-29.  Positions of ripples in a space–time plot.  The curves show 
positions of ripple crests as a function of time and downstream position.  The flow 
is steady and uniform, and the bed state is unchanging on average.  (Schematic.) 
 

 

106  To quantify the variability in ripple movement you might enlist a large 
number of volunteers to stand along the transparent sidewall and be responsible 
for keeping track of the positions of the ripples as a function of time.  A plot of 
position vs. time would look like Figure 12-29, from which you can see that 

 
•  for a given ripple UB varies widely and irregularly with time; 
•  a given ripple exists for a distance of movement that is only a few ripple 

spacings; 
•  ripples usually are born by division of one large ripple into two smaller 

ones, and usually die by becoming smaller and slower and then being 
overridden by a faster-moving ripple (on the average, deaths equal births). 

 
   

Despite all of this variability, when considered as an aggregate the lines in the 
graph have a definite average slope, which is probably the best measure of UB.  B
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Figure 12-30.  Plot of bed-form speed UB vs. mean flow velocity U in uniform 
flow for three sand sizes.  (Data are from Dillo, 1960.) 

B

 

 
107  You should expect UB to increase steeply with mean flow velocity U 

for a given sand, because, as you will learn in Chapter 12, bed-load transport rate 
increases steeply with flow strength and most of the bed load remains within 
individual ripples.  The magnitude of this increase depends, however, on the 
concurrent change in ripple size, because the larger the ripple, the slower it moves 
for a given bed-load transport rate.  The effect should therefore be most 
pronounced for ripples, which vary little in size with flow conditions and 
sediment size.  Systematic data on bed-form velocity as a function of flow 
strength and sediment size are surprisingly scarce, presumably owing to the 
difficulty of accurate measurement.  Figure 12-30, a plot of UB vs. U for three 
different sand sizes (Dillo, 1960), shows that UB increases sharply with U for a 
given sand size, as expected.  Note, however, that ripples in coarser sands move 
faster than ripples in finer sands.  The reason for this seemingly anomalous 
behavior is unclear.  There seem to be two possibilities: 

 
•  The volume transport of sand as traction load in the accelerating flow over 

the stoss face of the ripple might be greater in coarser sand than in finer 
sand at a given mean flow velocity.   
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•  The ripples in the coarser sand may have been smaller than in the finer 
sand, so that UB is greater even though bed-load transport rate might have 
been smaller. 

 
108  In the absence of suspension, particles are cycled through individual 

bed forms.  Think about a particle in the interior of a moving bed form (a ripple or 
a dune).  The particle is of course stationary relative to the substrate.  As the bed 
forms moves, the particle finds itself closer and closer to the stoss surface.  When 
it become exposed at the surface, it is entrained, moves up to the brink as part of 
the bed load, and then slumps or slides down the lee slope, stopping at some point 
on the slope (or at its base), there to be buried by later lee-side deposition to 
become entombed again, temporarily, within the body of the bed form. 

108  To the extent that the moving sediment is cycled within bed forms, the 
bed-load transport rate can be expressed in terms of the speed of movement of the 
bed forms.  For ripples this is a good approximation, because bed-load transport 
rate is usually zero or nearly so at some point in the trough.  Only if bed-load 
transport rate is nowhere zero over the bed-form profile, as is generally the case 
with antidunes, is this not true.  To derive an expression for the bed-load transport 
rate associated with bed-form movements, consider a train of identical bed forms 
in which bed-load transport rate is zero in the troughs (Figure 12-31).  The ripples 
have cross-sectional area A and spacing (i.e., repeat distance of cross-section 
geometry) L.  The time needed for passage of a bed form past a given point is Tr.  
The rate qf, expressed per unit width normal to the flow, at which volume of 
sediment is moved downstream by bed-load transport within the ripples 
(remember that this involves stripping of sediment from the stoss surface, 
dumping at the crest, and slumping down the lee surface) is the same as the rate of 
downstream shift of the ripple cross section, except for a correction factor 
discussed below.  A good way of thinking about this is to consider that the entire 
cross-sectional area of the ripple passes a given point on the bed in time 
T r = L/UB, so the average rate of passage of cross-sectional area past the point 
during this time is A/Tr, or, eliminating Tr, AUB/L.  So 

 
qf = K1 AUB

L            (12.25) 
 

For a more elegant derivation of this result, see Simons et al. (1965). 
 

 
 
Figure 12-31.  Definition sketch for derivation of a relationship for bed-form 
transport rate. 
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109  The correction factor K1 is needed because the transport rate is 
expressed as solids volume whereas bed volume is expressed as bulk volume, 
solids plus void space.  It is easy to derive a relationship between solids volume 
Vs and bulk volume Vb in a sediment sample.  Because voids volume and solids 
volume add up to total volume in a sediment,  

 
Vv + Vs = Vb         (12.26) 

 
where Vv is voids volume.  Also, the porosity k is defined as 

  
λ =  Vv

Vb          (12.27) 
   

Combining Equations 12.26 and 12.27 to eliminate Vv gives the relationship 
between solids volume and bulk volume:  

 
Vb = 1

1-λ  Vs         (12.28)  
 
110  Because λ in equant and fairly well sorted sediments is on the order of 

0.2–0.4, depending on both sorting and packing, the porosity correction factor 
1/(1-λ) is always positive and a little larger than one.  Using Equation 12.28, 
Equation 12.25 becomes 

 
qf = 1

1-λ  
AUB

L           (12.29) 
 
111  In the rest of this chapter 1/(1-λ) will be written K1 for convenience.  

If the bed forms have the shape of end-to-end triangles with height H, then 
A = H L/2 and Equation 12.29 becomes 

 
qf = K1 HUB

2           (12.30) 
 
112  Rubin and Hunter (1982) proposed that qf be called the bed-form 

transport rate and that the remainder of the bed-load transport rate, the part that 
bypasses the bed forms rather than being cycled within the same bed form, be 
called the throughgoing transport rate.  
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Figure 12-32.  Definition sketch for derivation of a relationship for bed-load 
transport rate at the crest of a ripple or dune. 

 

 
113  The bed-load transport rate (call it qsb) is greatest at the crests of 

ripples.  An expression for qsb at a ripple crest can be derived on the assumption 
that all the bed load arriving at the crest is dumped there to slump down the lee 
face and build it forward (Figure 12-32).  The slip-face angle is α and the 
horizontal distance of slip-face outbuilding is ζ.  As before, ripple velocity is UB 
and ripple height is H.  The principle is that qsb at the crest is equal to the time 
rate of addition of bulk sediment volume on the slip face.  Because the increment 
in volume of the slip-face deposit is just the thickness of the slip-face deposit, 
ζsinα, times the length down the slip face, H/sinα, 

 

qsb = K1 d
dt [(ζsinα H

sinα ] 

      = K1  d(ζH)
dt   

      = K1Hdζ
dt   

      = K1HUB         (12.31) 
  
114  By comparison of Equations 12.30 and 12.31 we have the neat result 

that, for ripples with triangular cross-section, bed-load transport at the crests is 
exactly twice the average value.  This result seems first to have been derived by 
Bagnold (1941). 

 

2D DUNES AND 3D DUNES 

115  It has become widely stated, in the literature on unidirectional-flow 
dunes, that at low flow strengths in the dune range the dunes tend to be straight-
crested, with fairly even crest elevations and trough elevations.  Such bed forms 
are referred to as two-dimensional (2D), in the accepted hydrodynamic sense that 
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the geometry of the features can be represented by a single flow parallel cross 
section extending unchanged across the width of the flow.  In contrast, at high 
flow strengths in the dune range the dunes show much greater crest curvature, 
much less crest continuity, and much greater variability in trough depths.  Such 
bed forms are said to be three-dimensional (3D).  Correspondingly, large-scale 
cross stratification produced by the movement of dunes is recognized as either 
two-dimensional, interpreted as representing relatively low flow strengths in the 
dune regime, or three-dimensional, interpreted as representing relatively high 
flow strengths—as you will see in Chapter 15.  Recently, however, Venditti et al. 
(2005), on the basis of a systematic set of flume experiments using well sorted 
half-millimeter sand, claim that at low flow strengths in the dune regime initially 
2D dunes eventually evolve into 3D dunes—a finding that is inconsistent with 
much of the earlier flume studies on dunes.  The issue is not yet settled. 

 
Dynamics of Unidirectional-Flow Bed Configurations  

I ntroduction 
116  How is it that a turbulent flow molds a bed of loose sediment into 

stable bed forms?  The subject of bed-configuration dynamics has long been one 
of frustration and controversy.  The fundamental difficulty is easy to state:  it has 
to do with the difficulty of specifying adequately how sediment transport rate 
varies from place to place over a geometrically irregular transport surface.  Before 
elaborating, I should make clear what I mean by the sediment transport rate at a 
point.  I will address more fully in the following chapter the rate at which 
sediment is transported past a given cross section of the flow, in solids volume per 
unit width of the flow; it is usually denoted by qs.  Here we need to think about 
how the “point” value of the volumetric transport rate, which you can view as the 
sediment transport rate over an arbitrarily small local area of the bed (again 
expressed per unit width of flow), varies from point to point on a nonplanar 
sediment bed.  I will denote this by qs also. 

117  The velocity profile and the local bed shear stress (i.e., the skin 
friction) at some point on a nonplanar sediment bed, and their time variation, are 
not likely to be the same as at a point on a featureless planar bed with the same 
discharge and depth above it.  This is because the details of forces and motions in 
accelerating and decelerating boundary layers are substantially different than in 
non-accelerating boundary layers.  You have already seen this for the grossly non-
uniform flows around bluff bodies like spheres and cylinders, but the effect is 
substantial even when much smaller accelerations or decelerations are caused by 
mild streamwise gradients in fluid pressure.  The structure of the flow above any 
point tends to be inherited from upstream as the flow adjusts toward new 
conditions, so the flow at the given point depends in a complicated way on the 
shape of the bed for a long distance upstream.  So even if qs could be assumed to 
be in local equilibrium with the spatially varying flow, it could not be specified in 
any simple way as a function of position.  Furthermore, qs is likely not to be in 
equilibrium with local flow conditions, because a finite distance is needed for 
load to be dropped out or picked up as transport capacity changes.  This distance 
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should be expected to be greater for suspended load than for bed load, but it 
cannot be assumed to be negligible even for the latter. 

118  The development of bed forms depends on the variation in qs over the 
bed-form profile.  In turn, qs depends on the flow, and if an adequate expression 
for qs as a function of position could be found it could be combined with the 
kinematic constraint imposed by conservation of sediment volume to give an 
equation that could be solved for the evolution of any initial bed geometry to a 
steady equilibrium geometry.  But qs cannot be specified so simply:  as  you have 
seen, the local sediment transport rate is itself a function of the bed configuration 
for which we are trying to solve.  

119  In the face of this depressing prospect, many investigators have 
attempted with some limited success to glean physical understanding of the 
dynamics of bed configurations by making various simplifying assumptions that 
allow qs to be expressed in a form that leads to mathematically tractable 
equations.  Not many of these attempts have led to greatly improved 
understanding of the problem.  This is a field of endeavor marked by an 
understandable scarcity of satisfying or useful results.  

120  In this section I will concentrate not so much on a detailed review of 
the literature on bed-configuration dynamics as on the physical effects related to 
the existence, shape, size, and movement of bed forms.  I will deal with each of 
these four aspects of dynamics in the following sections.  The aim is to give you 
some appreciation of the potential and limitations of the various approaches to the 
problem of bed-configuration dynamics.  It turns out to be easier to account 
qualitatively for shape and movement than for existence and size.  As a necessary 
preliminary I will first derive the sediment conservation equation, a kinematic 
relation expressing conservation of sediment volume (or mass) that has to hold in 
any sediment-transporting system.  

 
S ediment Conservation Equation  

121  In any flow that transports sediment, the volume or mass of 
transported sediment must be conserved.  This requirement leads to a purely 
kinematic relationship that has to hold irrespective of the dynamics of sediment 
transport.  I will concentrate on a two-dimensional flow (one that varies in two 
dimensions only, downstream and upward from the bed but not in the cross-
stream direction), but the principle is the same for a flow that varies in all three 
directions.  

122  Consider a small rectangular region R of the sediment bed, with unit 
width normal to the flow and with length Δx in the flow direction (Figure 12-33).  
The area of R is Δx because of the unit width.  Denote by h the elevation of the 
bed above some arbitrary horizontal datum plane.  Transport of sediment at any 
cross section can be expressed by qs, the volumetric sediment transport rate per 
unit width of flow; this may include sediment moving as bed load or in 
suspension.  (In Chapter 12, the symbol qs is used for the unit transport rate 
expressed as mass rather than as volume.)  Let the depth-averaged volume 

 400



concentration of the load be C.  (Strictly, C includes the concentration of bed load 
as well as suspended load.)  The difference between qs at the downstream 
boundary of R, (qs)out, and at the upstream boundary of R, (qs)in, is Δqs: 

   
(qs)out - (qs)in = Δqs        (12.32)  

 
 

 
 

Figure 12-33.  Definition sketch for derivation of the sediment conservation 
equation. 

 

 
123  Any change Δh in bed elevation during some time interval Δt is caused 

by storage of sediment in R (deposition, or aggradation) or removal of sediment 
from R (erosion, or degradation).  This change can be viewed as the sum of two 
contributions.  One of these, Δhs, is caused by downstream change in qs:  if qs is 
greater across the upstream face than across the downstream face of R, then 
sediment must be stored in R, but if qs is smaller, then sediment must be removed 
from storage in R.  The other contribution, Δht, is caused by temporal change in 
C:  if the concentration of transported sediment is decreasing with time, then there 
must be deposition on all areas of the bed, but if the concentration is increasing, 
then there must be erosion (assuming that sediment is not being added to the flow 
from above).  The bulk volume ΔhsΔx of aggraded or degraded bed in R due to 
downstream variation in qs is equal to Δt times (qs)in-(qs)out, the rate of sediment 
storage due to the difference in transport rates across the upstream and 
downstream boundaries of R, with a correction for the porosity effect (Equation 
12.28): 

 
hsΔx = Δt[(qs)in - (qs)out] = -K1ΔqsΔt     (12.33)  
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124  The porosity correction factor 1/(1-λ), again denoted by K1, is needed 
because the volume of transported sediment is measured in solids volume whereas 
volume of bed sediment is measured in bulk volume, solids plus void space.  The 
bulk volume of aggraded bed in R due to temporal variation in C is equal to minus 
the total change in volume of suspended sediment above R, again corrected for the 
porosity effect: 

 
ΔhtΔx = -K1dΔCΔx       (12.34)  

 
where d is flow depth.  Using Equations 12.33 and 12.34, the average rate of 
change of bed elevation with time over R, Δh/Δt, can now be written 

 
Δh
Δt   = Δhs

Δt   + Δht
Δt   

= -K1(Δqs
Δx   + dΔC

Δt  )        (12.35) 
 

In the limit, as Δx→0, Equation 12.35 becomes 
 

�h
∂t   = -K1(∂qs

∂x   + d∂C
∂t  )      (12.36) 

 
125  The differential equation (Equation 12.36) is a volume-balance 

relationship that must hold at every point on the bed regardless of the sediment-
transport dynamics.  It relates the time rate of change of bed elevation at a point, 
∂h/∂t, to the downstream rate of change of sediment transport rate at that point, 
∂qs/∂x, and the time rate of change of total suspended-sediment concentration in 
the flow, ∂C/∂t.  It is usually called the sediment conservation equation, or the 
sediment continuity equation.  Its use is essential in thinking about the temporal 
changes in bed geometry consequent upon spatial changes in transport rate.  If C 
does not change with time, Equation 12.36 becomes 

 
∂h
∂t   = -K1

∂qs
∂x           (12.37) 

 
Rate of change of bed elevation is thus directly proportional to minus the 
downstream rate of change of sediment transport rate.  If qs decreases 
downstream for any reason, the bed is aggraded; if qs increases downstream, the 
bed is degraded.  

 
M ovement of Bed Forms  

126  Armed with the sediment conservation equation and all that has been 
said about flow and sediment transport in turbulent boundary layers, what can we 
do about accounting for the existence, size, shape, and movement of loose-
sediment bed forms?  Look first at movement, because that is the most 
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straightforward.  Consider a hypothetical bed form like that in Figure 12-34A, one 
element in a train of similar bed  

 

 
 

Figure 12-34.  Variation of A) h, B) ∂h/∂t, C) ∂qs/∂x, and D) qs over a 
hypothetical unchanging bed form in a low-Froude-number flow. 

 

 
forms.  Assume that the bed is in equilibrium with a steady sediment-transporting 
flow, and that the bed form moves downstream with unchanging size and shape.  
Equation 12.37 associates with the movement of the bed form a particular pattern 
of variation of qs over the bed-form profile in the following way.  For the bed 
form to move downstream it is a kinematic necessity that ∂h/∂t be negative on the 
upstream side of the bed form and positive on the downstream side (Figure 
12-34B).  Note that ∂h/∂t is zero at the crest and trough and has its greatest 
absolute value at points of steepest slope on the bed-form profile.  By Equation 
12.37, ∂qs/∂x must vary with x in a sense just opposite to the variation in ∂h/∂t 
(Figure 12-34C), and therefore qs itself must be greatest at the bed-form crest and 
least in the trough (Figure 12-34D).  No zero point is shown on the qs axis in 
Figure 12-34D, because any position of the curve is consistent with that of the 
curve for ∂qs/∂x in Figure 12-34C.  On ripple bed forms, qs is zero or nearly so in 
the trough, and it may even be negative if the reverse flow in the separation zone 
is strong enough.  Over antidunes, on the other hand, there may not be much 
relative variation in qs over the bed-form profile.  If the bed form is to move 
downstream qs must increase up the stoss surface from the trough to the crest and 
must decrease down the lee surface from the crest to the next trough.  

127  In any flow of a low-viscosity fluid like air or water with a velocity 
large enough to transport sediment, Reynolds numbers of flow over even small 
ridges or mounds on the bed are large enough for substantial front-to-back 
asymmetry in local bed shear stress.  Recall that beginning at Reynolds numbers 
of about 10 the spacing of streamlines is closer, and therefore the skin friction is 
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greater, on the front side of a cylinder or a sphere than on the back.  This becomes 
more pronounced with increasing Reynolds number, and when flow separation 
eventually develops, the skin friction on the back is negligible.  The effects are 
qualitatively the same for any ridge or mound on a sediment bed.  So provided 
that the free surface remains approximately planar above the bed form, any bed 
form—even one whose height is only a few grain diameters—should have larger 
qs on the upstream side than on the downstream side, with a maximum near the 
crest and a minimum somewhere in the  trough.  From Figure 12-34D it is clear 
that this distribution of qs guarantees downstream movement.  This distribution of 
qs is not likely to be exactly the one needed for maintenance of bed-form shape, 
but that is a matter for the next section; the bed form always moves downstream 
even if its shape tends to change at the same time.  

128  If the mean-flow Froude number is close to one, surface gravity waves 
interact with the bed to produce stationary or slowly shifting bed waves that are in 
phase or almost in phase with the water-surface waves.  For these upstream-
shifting bed forms, which in an earlier section were called antidunes, the 
interaction of the free-surface wave and the bed-surface wave is such that qs 
decreases up the upstream slope and increases down the downstream slope, 
resulting in upstream movement.  No capsule statement can be made at this point 
that elucidates the dynamical reasons for this variation of qs.  

129  Up to this point, it has been shown: 
 
•  what the variation in qs has to be over a bed-form profile for the bed form 

to move, and 
•  that in the case of ripples the expected variations in qs are in accord with 

the bed-form movement actually observed. 
 

This may seem like a self-evident or trivial exercise, but it shows how we can 
obtain some insight into the behavior of bed forms by combining ideas about 
sediment transport with the sediment conservation equation, and it points the way 
toward other problems that are not as easy to deal with.  

 
S hape of Bed Forms  

130  Introduction.—A striking characteristic of ripples and dunes is their 
asymmetrical profile, with a gently sloping upstream surface and a steeper, nearly 
angle-of-repose slip face on the downstream surface.  Typically the bed profile 
shows a sharp angle at the top and bottom of the slip face—although reverse flow 
in the separation eddy can smooth out the slope break at the base.  If the breaks in 
bed slope at the top and base of the slip face are ideally sharp, they represent 
jumps or discontinuities in ∂h/∂t and therefore by Equation 12.37 in ∂qs/∂x as 
well.  Both h and qs show kinks in their profiles at these points.  
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Figure 12-35.  Definition sketch for analysis of the evolution of bed-form shape. 
 
 
131  The Profile Shape of Ripples and Dunes.—In this section it is shown 

how the asymmetrical profile shape of ripples or dunes can be accounted for by 
combining the sediment conservation equation with a very general assumption 
about the physics of the sediment transport, namely that qs increases with 
increasing flow strength.  As in the preceding section, look at a hypothetical bed 
form in a train of identical bed forms (Figure 12-35).  In this section we start with 
a symmetrical bed form and consider how its profile changes with time. 
Consideration is resticted to flows with low Froude number, so that the water 
surface remains nearly planar whatever the bed geometry.  The following line of 
reasoning was first presented by Exner (1925).  

132  The strategy is to develop a relationship between bed elevation h and 
sediment transport rate qs, in order to put the sediment conservation equation into 
a form that can be solved for bed elevation as a function of position and time.  As 
discussed above, ultimately we would like to be able to supply enough physics for 
this approach to lead to insights about how bed forms grow.  For now we have to 
be content with very simple assumptions about qs that will lead to understanding 
of bed-form shape but not bed-form growth.  

133  The mathematically simplest assumption we can make about qs is that 
it is directly proportional to some variable that describes the flow strength above 
the point at which qs is measured.  Using mean flow velocity U as this flow-
strength variable, 

 
qs = K2U         (12.38)  

 
where K2 is some constant.  This has some serious shortcomings: 
 

•  there is a finite U for which qs becomes nonzero, and at smaller U no 
sediment is moved; 

•  qs does not vary linearly with U even when U is strong enough to move 
sediment; and 
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•  if U rather than the skin friction is to be used to characterize qs, the flow 
depth d must also be specified in the function. 

 

134  Notwithstanding these difficulties, this is a workable assumption for 
the task at hand, because it contains a large element of truth and it permits insight 
into how the bed evolves.  More sophisticated assumptions would lead to the 
same qualitative results on the evolution of bed-form shape but would necessitate 
working with equations that are much more difficult to solve.  Furthermore, the 
fact that even such an oversimplified assumption about qs accounts well for the 
evolution of bed-form shape is revealing in itself. 

  
135  Using Equation 12.38, the sediment conservation equation (Equation 

12.37) can be written 
 
∂h
∂t   = -K1K2

∂U
∂x           (12.39) 

 
where K1 is again the porosity correction factor 1/(1-λ).  Conservation of fluid 
volume in the flow requires that, per unit width, 

 
Ud = U(hs-h) = K3       (12.40) 

 
where hs is water-surface elevation above the same arbitrary datum as for h, and 
K3 is another constant.  Equation 12.40 tells you that where the flow is deeper 
over some two-dimensional bed configuration the velocity is smaller, and where 
the flow is shallower the velocity is greater, so by Equation 12.36 there is 
deposition or erosion depending on the sign of ∂U/∂x.  Combining Equations 
12.39 and 12.40, 

 
∂h
∂t   = -K1K2K3

(hs-h)2   ∂(hs-h)
∂x          (12.41) 

 
136  Assuming hs to be constant (a reasonable assumption for flows at low 

Froude numbers) and writing K for the constant K1K2K3, Equation 12.41 
becomes 

 
∂h
∂t   = K

(hs-h)2  ∂h
∂x          (12.42) 

 
You can verify for yourself that the solution to the fairly simple partial differential 
equation 12.42 is 

 

hs-h = f[ Kt
(hs-h)2  - x]      (12.43) 

 
where f is an arbitrary function.  To investigate the change in bed geometry with 
time, Exner (1925) assumed an initial bed topography given by a cosine function: 
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h = Ao + A1cos 2πx
L          (12.44) 

 
where L is the spacing of the sinusoidal bed forms, and Ao and A1 are constants.  
This is what the bed profile at time t  =  0 would be if Equation 12.43 is 
specialized in such a way that the bed profile as a function of x and t is 

 

h = Ao +A1cos 2π
L   [x - K1K2t

(hs-h)2  ]    (12.45) 
 
 

 
 

Figure 12-36.  Evolution of an initially sinusoidal bed form with time.  (After 
Exner, 1925.) 

 
 
137  Figure 12-36 shows how the initial sinusoidal bed profile is modified 

with time according to Equation 12.45.  The upstream slope of the bed form 
becomes gentler and the downstream slope becomes steeper, until finally the 
downstream slope passes through the vertical and an overhang develops.  If this 
were a real bed form, a slip face would develop when the slope angle of the 
downstream side reaches the angle of repose.  What is less clear from Figure 
12-36 is that the bed form does not change in height as it changes in shape—but 
you can see from Equation 12.45 that the highest point on the bed form always 
has a height h  = Ao  +  A1, because the maximum value of the cosine function is 
one.  This just means that the oversimplified assumption about qs is inadequate to 
address the problem of bed-term growth.  

138  So even a very simple assumption about the dependence of qs on the 
flow accounts for the tendency for an originally symmetrical bed-form profile to 
evolve into the markedly asymmetrical profile characteristic of ripples.  If we use 
a different function in Equations 12.44 and 12.45 to represent a different 
symmetrical or nearly symmetrical initial profile, the end result is just about the 
same.  It is easy to observe just this kind of profile development in the laboratory:  
mold a long and low symmetrical ridge transverse to the flow on the sand bed of 
your flume, turn up the discharge until the sand moves, and then watch the profile 
as it is transformed gradually into a ripple, just as in Figure 12-36. 
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G rowth of Bed Forms  
139  Introduction.—It is more difficult to account for the growth of bed 

forms than for their movement and shape.  Here I will follow the same approach 
as before, that of combining sediment-transport dynamics with the sediment 
conservation equation, but it will not lead to results that are as satisfying.  This is 
because bed-form growth and decay, or more generally the stability of bed 
configurations, depends on the interaction of flow and sediment transport in ways 
too complicated to be expressed or parameterized by local conditions like flow 
velocity, boundary shear stress, bed elevation, or bed slope:  it involves the entire 
bed configuration, not just local variations in h and qs. 

140  After describing a hypothetical flume experiment to examine some of 
the physical effects that have to be explained, I will again examine the qualitative 
kinematic constraints imposed on qs during bed-form growth and then review 
some of the attempts that have been made to account for the existence of bed 
forms by deriving and solving equations for bed-form growth based on various 
assumptions about transport dynamics.  

141  Hypothetical Flume Experiment.—Make a long series of low 
transverse ridges on a sand bed in your flume (Figure 12-37).  It makes no 
difference whether these are initially symmetrical or asymmetrical, because you 
have already seen that the flow soon gives the profile of a transverse ridge a ripple 
shape, whatever its initial shape.  It helps if you give the ridges an initial spacing 
that’s isnot greatly different from what you know beforehand about equilibrium 
ripple spacing (if any) corresponding to the conditions of flow and sediment size 
you are going to use, because then you maximize the duration of your experiment 
by reducing the tendency for the bed forms to change their spacing by dividing 
and merging.  If you make the train of initial ridges very regular, the ripples stay 
very much alike for a long time as they evolve.  Eventually the inevitable 
irregularities in initial bed geometry (together with the stochastic nature of the 
grain transport itself) lead to the irregular geometry characteristic of real bed 
forms, but this irregularity is not essential to the existence of the bed forms.  I 
emphasize that this experiment is a valid way of thinking about the physics of 
growth and decay of ripples within the context of the initial spacing you choose, 
although in general you cannot expect these ripples to be happy with the given 
spacing forever, even if at first they grow rather than decay. 
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Figure 12-37.  Hypothetical flume experiment on growth and decay of a train of 
artificially constructed bed forms. 

 
 

142  Pass a sand-moving current over the ridges, and keep track of the 
elevations of crests and troughs.  Under some conditions (Figure 12-37A) bed-
form height increases as the troughs become deeper and the crests become higher.  
Stoss surfaces become steeper as well, because bed form spacing is strongly 
locked in to the original value and does not change, at least not until after a long 
running time.  The lee surface is likely to become a slip face almost from the 
beginning, as you have already seen, and then stay that way.  Associated with the 
increase in crest elevation and decrease in trough elevation is an increase in the 
volume of sand contained in the ripple per unit width (volume being measured 
upward from a plane coincident with the bed-form troughs).  Time-lapse motion-
picture photography of the ripples as they move is a good way of appreciating the 
changes in bed-form height and stoss-surface steepness.  If you know something 
beforehand about equilibrium height of ripples as a function of flow conditions 
and sediment size, you could first generate a set of low ripples under one set of 
flow conditions and then change the flow conditions to what you know will make 
higher ripples, and then sit back and watch.  

143  Now make a second run in which you start out with a train of initially 
high and steep ridges (Figure 12-37B).  The bed forms rapidly become 
asymmetrical as before, and sediment transport and ripple movement are 
qualitatively the same as before, but the bed forms are degraded as they move 
downstream:  there is a gradual increase in trough elevation and decrease in crest 
elevation, and a corresponding gradual decrease in bed-form volume and also in 
the steepness of the stoss surface.  Depending on sediment size and flow 
conditions, the ripples may stabilize at some equilibrium height, shape, and 
velocity, or they may become more and more like fast-moving sediment sheets 
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with small downstream steps until ultimately the bed is transformed into a planar 
transport surface.  

144  Both kinds of run are an approximate simulation of what happens 
when an equilibrium ripple bed configuration is subjected to a change in flow 
conditions.  They leave out the effects of adjustment in ripple spacing by gradual 
accentuation of inevitable small irregularities in the profile and then division of 
one ripple into two, or fusion of two ripples into one.  But they illustrate an 
important principle of bed-configuration stability:  if very small disturbances 
grow larger, then some nonplanar bed configuration is the stable one under those 
conditions of flow and sediment, whereas if a preexisting nonplanar bed 
configuration is degraded to a planar transport surface, then upper-regime plane 
bed or lower-regime plane bed is the stable configuration.  An analysis of how the 
ripple trains grow or decay in experiments like this should therefore provide 
insight into the dynamics of bed-form stability.  

145  Conditions for Growth and Decay of Bed Forms.—In this section I 
will reason as far as possible about the conditions for growth and decay of bed-
form trains, like those in the hypothetical experiment described above.  Take the x 
direction downstream and measure bed height from some plane parallel to the 
plane representing the mean bed surface and lying well below it.  We will restrict 
ourselves to indefinitely long trains of two-dimensional flow-transverse bed forms 
in a transport system that’s uniform in the large, in the sense that qs averaged over 
an entire bed form does not change in the downstream direction (Figure 12-38).  

 

 datum plane
x

mean bed plane

h

 
Figure 12-38.  Definition sketch for analysis of growth and decay of bed-form 
trains in steady uniform flow. 

 

 
146  The bed-form profile may or may not be changing.  In either case, 

∫hdx evaluated between two equivalent points on successive bed forms is 
constant.  This expresses the condition that the bed is not aggrading or degrading 
on the average.  If crests become higher, troughs have to become deeper in such a 
way that the mean bed elevation stays the same.  
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147  It is instructive to consider first the reference case of an unchanging 
profile.  In the following, refer to Figure 12-39 (which is fundamentally the same 
as Figure 12-34).  The kinematic condition for an unchanging profile is that 

 
h = f(x-UBt)         (12.46) 

 
where UB is a constant and f is some periodic function that represents the bed 
profile at a given time.  The argument x-UBt in the function implies that the 
profile propagates or shifts downstream at speed UB as an unchanging wave form; 
UB is therefore basically the same as the bed-form velocity used earlier in this 
chapter.  To see the consequences of this condition, assume for now that the bed 
profile is a sine wave:  

 
H = sin(x-UBt)        (12.47) 

 
There is really no loss of generality in doing this, because any periodic bed profile 
can be represented as a Fourier sum of sinusoidal components; at the end of this 
paragraph we will revert to a general periodic function f.   

 
148  Differentiating Equation 12.47 with respect to t, 
 
∂h
∂t   = ∂∂t  sin(x-UBt) 

= d[sin(x-UBt)]
d(x-UBt)   ∂(x-UBt)

∂t   

= UBcos(x-UBt)        (12.48)  
 

by use of the chain rule for partial differentiation.  Note that ∂h/∂t in Equation 
12.48 is 90° out of phase with h in Equation 12.46, if the phase angle is measured 
in the downstream direction.  In other words, the peak of the function in Equation 
12.48 is offset downstream from that of the function in Equation 12.46 by one-
quarter of a wavelength.  (If you are not sure about the phase relationships, plot 
the four curves y  = cosx, y  = sinx, y  = -cosx, and y  = -sinx and watch the sine 
wave shift along the x axis by 90°, i.e., one-quarter of a wavelength, each time.)  
Now, to find ∂qs/∂x substitute Equation 12.48 into the sediment conservation 
equation, Equation 12.37: 

 
∂qs
∂x   = - 1

K1
 ∂h
∂t   

= -UB
K1

  cos(x-UBt)       (12.49) 
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Figure 12-39.  Profiles of A) h, B) ∂h/∂t, C) ∂qs/∂x, and D) qs, for an unchanging 
ripple train in steady uniform flow.  For simplicity, the bed-elevation profile is 
shown as a sine curve; the results are qualitatively the same for any periodic bed 
profile. 

 

 149  Note that ∂qs/∂x in Equation 12.49 is 270° out of phase with h in 
Equation 12.46 because of the minus sign, i.e., the crest of the ∂qs/∂x profile is 
one-quarter of a wavelength upstream of the crest of the bed-elevation profile.  
Integrating ∂qs/∂x in Equation 12.49 with respect to x, 

 
qs(x,t) =∫cos(x-UBt)dx 

= UB
K1

  ∫cos(x-UBt)dx 

= UB
K1

  sin(x-UBt) + c1(t)        (12.50) 
 

where c1(t) is a constant of integration that in general could be a function of t, but 
is not in this case because we are assuming steady flow.  (The constant of 
integration has to be a function of t because the integration is a “partial 
integration” of a function of two variables with respect to just one of those 
variables. while holding UBt constant.)  Note that qs is in phase with the bed 
profile and differs only by a multiplicative constant UB/K1 and an additive 
constant c1.  

150  To summarize, for an unchanging bed profile 
  

h(x,t) = f(x-ct)        (12.51) 
  

and 
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qs(x,t) = UB
Kl

  f(x-UBt) + c1       (12.52) 
  

where c1 is just a constant that relates the average bed elevation to the average 
sediment transport rate.  The variation of qs is in phase with the bed profile and 
has the same shape except for the constant factor UB/K1.  Remember that this is 
all just a kinematic necessity; we have not specified anything about how qs and h 
interact dynamically to produce the particular patterns observed.  

151  From here on I will concentrate on lower-flow-regime ripple or dune 
bed forms.  You have seen that if suspended-load transport is unimportant, lower-
regime bed forms are dominated by slip faces that represent shock discontinuities.  
These discontinuities are associated with major flow separation over the bed form, 
but in a sense they are independent of the flow separation, in that they are a 
consequence of the steep increase in qs with flow strength. Disregarding minor 
reverse flow in the lee eddy, qs is zero from the toe of the slip face downstream to 
the reattachment point.  If the profile is unchanging with time, this stretch of bed 
must be horizontal:  within it qs is independent of both x and t because it is 
identically zero there, so h, which differs from qs only by a multiplicative and an 
additive constant (compare Equations 12.46 and 12.50), is constant in x and t 
there. This stretch of bed with qs  =  0 may not be quite the lowest in the profile. 
because of some upchannel-directed sediment transport just upchannel of the 
reattachment zone, but it can safely be assumed so without affecting the 
conclusions of this section.  Likewise, there is no dynamical requirement that the 
brink at the top of the slip face is the highest point on the profile, even if the 
profile is unchanging with time, but, because there is such a strong tendency for 
flow separation to develop upstream of a negatively sloping surface, the brink 
should be just about the highest point on the profile.  It is therefore convenient to 
let the slip face represent the bed-form height H, and it is also convenient to let 
the rate of downstream advance of the brink represent the velocity UB of the 
ripple.  

152  The presence of the shock discontinuity represented by the slip face 
imposes a further kinematic relationship that must hold among bed-form height, 
bed-form velocity, and the value of qs  at the brink:  

 
(qs)brink = K1HUB        (12.53) 

 
This is exactly the same as Equation 12.31; if you go back and review the 
derivation of that equation, you will see that it holds for the present situation as 
well, provided that all of the load is dumped at the break in slope at the brink to 
build the slip face forward.  Equation 12.53 holds generally, not just for an 
unchanging profile.  Note that the slip-face angle drops out of the expression.  
This is consistent with the idea that the slip face is just the physical manifestation 
of a shock discontinuity in qs.  The sediment delivered to the crest could just as 
well be falling off a cliff, in terms of the kinematics of the phenomenon! 
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Figure 12-40.  Profiles of A) h, B) ∂h/∂t, C) ∂qs/∂x, and D) qs, for a train of 
ripples increasing in height.  A) Ripples are adjusting in height; B) ripples have 
reached equilibrium.  See text for explanation. 

 
 
153  In the light of all this bed-form kinematics, what can be done about 

accounting for the results of the hypothetical experiment?  In the first run the bed 
forms started out too low and grew to some stable greater height, and they 
changed their shape in the process.  After the bed forms reached equilibrium, the 
distributions of h, ∂h/∂t, ∂qs/∂x, and qs must have been as shown in Figure 
12-40B, which is qualitatively the same as Figure 12-34.  Note the discontinuities 
in ∂h/∂t and ∂qs/∂x, reflecting the sharp kinks in bed elevation and transport rate 
at the top and bottom of the slip face.  While the ripple train was adjusting, these 
curves must have been as shown in Figure 12-40A.  The differences between 
Figure 12-40A and Figure 12-40B look minor, but they are very significant for 
ripple growth.  Large differences should not be expected anyway, because change 
in ripple shape and height is slow relative to ripple movement.  The maximum in 
qs on the stoss slope is located a little upstream of the brink rather than right at it.  
This leads to upward growth of the upper stoss surface during migration.  Also, 
there is a downchannel slope to the bed between the base of the slip face and the 
low point on the profile.  These two differences reflect stronger-than-equilibrium 
scour in the reattachment zone and just downstream, leading to a temporal 
lowering of bed elevation in the trough.  The extra sediment produced by this 
scour is transported up the stoss surface to steepen the upper part.  The slip face 
lengthens as it builds into the deepening trough, making ripple height greater.  By 
Equation 12.53, UB  
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Figure 12-41.  Profiles of A) h, B) ∂h/∂t, C) ∂qs/∂x, and D) qs, for a train of 
ripples decreasing in height.  A) Ripples are adjusting in height; B) ripples have 
reached equilibrium.  See text for explanation. 
 

 
tends to decrease as the slip face lengthens, and this augments the tendency for 
increased trough scour, because the reattachment zone passes more slowly along 
the bed in the trough as it is driven downstream by the next ripple coming along.  
Eventually the geometry and sediment transport adjust to the new flow, and a 
picture qualitatively like that of Figure 4-40B is reestablished with a greater ripple 
height and a different ripple shape. 

154  In the second run, the bed forms started out too large and shrank either 
to some stable smaller height or were degraded completely.  Figure 12-41 shows 
the distributions of h, ∂h/∂t, ∂qs/∂x, and qs as the ripples were changing.  If the 
ripples reached equilibrium in the run, Figure 12-41A can be compared with 
Figure 12-41B for the stable smaller ripples.  If not, then Figure 12-41A evolves 
into an uninteresting graph, not shown, in which h and qs are positive and 
constant, and ∂h/∂t and ∂qs/∂x are zero.  Note in Figure 12-41A that qs is 
increasing at all points up the stoss surface from reattachment.  Because ∂qs/∂x is 
still positive at the brink, ∂h/∂t is negative there, so the crest elevation is 
decreasing with time.  Scour in the trough is weaker than needed to maintain 
trough depth, so the bed slopes upward at all points downchannel of the base of 
the slip face, although no sediment is moved on the stretch of bed from there to 
the reattachment point.  Trough elevation increases as the slip face becomes 
shorter by building onto the upsloping trough surface, so both ripple height and 
ripple volume decrease.  By Equation 12.53, UB tends to increase as the slip face 
becomes shorter, and this augments the weakening of scour in the trough because 
it causes the reattachment zone to sweep more rapidly downchannel.  

155  In summary, changes in ripple height, shape, and velocity can be 
viewed in terms of the interaction among three related but distinguishable factors: 
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•  the dependence of qs on flow structure along the reach of bed extending 

from the reattachment point up the stoss surface to the brink;  
•  the rate at which the zones of differing flow structure downstream of the 

point of flow separation are swept along the bed surface by the advancing 
crest upstream, as specified by the relation expressed by Equation 12.53 
among slip-face height, ripple velocity, and sediment transport rate at the 
brink; and  

•  the slope of the trough surface onto which the slip face builds. 
 

156  We have not solved any problems of bed-form stability here; we have 
only shown what factors are involved.  Nonetheless, this line of approach is 
nonetheless useful, in that it aids in an understanding of the problem.  

 
157  Stability Analyses.—In order to understand the existence of bed 

forms, various investigators have resorted to stability analysis, a mathematical 
technique, useful in many areas of applied mathematics, whereby a partial 
differential equation is somehow developed that gives the rate of growth of a 
periodic disturbance or perturbation introduced onto the bed surface.  The 
assumption is that if the rate of growth of the perturbation is positive the 
perturbation is amplified with time, and bed forms eventually develop.  If, on the 
other hand, the perturbation is damped, then a plane bed should be the only stable 
bed configuration.  The differential equation is of the same kind as used in the 
preceding sections.  It comes about by supplying a relationship for qs as a function 
of flow, which can be used to put the sediment conservation equation into a 
solvable form.  This equation has to go beyond the oversimplified assumptions 
made in the section on shape of ripples, because we saw that those assumptions 
account only for change in ripple shape, not in ripple volume.  

158  The great advantage of the stability approach is that it can be 
developed for perturbations with amplitude very small compared to wavelength, 
so that bed slopes are very small.  It is then more likely that relationships for 
sediment transport that are not grossly unrealistic can be specified.  By the same 
token, however, without further analysis this approach gives no information on 
the nature of the resulting bed configuration when the perturbation is amplified to 
the extent that that the small-amplitude assumption is no longer valid.  There is 
the possibility, however, that an estimate of the spacing of the resulting bed forms 
can be obtained by determining the wavelength of the perturbation that shows the 
fastest rate of growth.  

159  It is worth mentioning several attempts, along the above lines to 
account for observed bed configurations: those by Kennedy (1963, 1969), Smith 
(1970), Engelund (1970; see also Engelund and Fredsøe, 1974), Richards (1980), 
McLean (1990), Ji and Mendoza (1997), and Jerolmack et al. (2006).  (You can 
see, from that list, that the pursuit of the fundamental dynamics by means of 
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stability analysis has had a long history.  The last word has not been spoken on 
that topic—a manifestation of the enduring obstacles to a unified and generally 
accepted theory.) 

160  Kennedy’s analysis, which is most relevant to bed configurations at 
mean-flow Froude numbers close to one, assumes inviscid flow with a wavy free 
surface over a wavy boundary.  By making simple assumptions about sediment 
transport rate as a function of near-bed velocity, Kennedy developed a framework 
that accounts well for the occurrence of antidunes—bed forms whose behavior is 
dependent upon the presence of the free surface.  The theory does not so much 
predict the bed configuration as provide a rational framework in which to account 
for it:  as do many later analyses by others, the analysis involves a parameter 
called the lag distance (the distance by which local sediment transport rate lags 
behind the local velocity at the bed) that would have to be supplied by either 
experiment or additional theory.  For the stability of antidunes, the theory works 
well with physically realistic assumptions about the lag distance in that it 
succeeds in accounting for the observed spacing of antidunes.  As might be 
expected from the essential role of the presence of the wavy free surface in the 
analysis, the theory is less successful in accounting for dunes.  Kennedy’s work 
stimulated many subsequent attempts along the same lines.  

161  Smith (1970) developed a stability analysis to deal specifically with 
flow at Froude numbers low enough that free-surface effects are negligible.  
Making suitable assumptions about nature of the flow (eddy-viscous flow of real 
fluid) and about sediment transport rate as a function of flow, Smith developed an 
equation that, when linearized by retaining only the most significant terms, is 
amenable to stability analysis.  The result is that, for these not grossly unrealistic 
assumptions about flow and sediment transport, a positive growth rate, and 
therefore development of ripple-like bed configurations, is predicted for all flows 
strong enough to transport sediment.  This is a rather fundamental and satisfying 
way to account for the existence of ripple-like bed configurations under 
reasonably realistic assumptions about flow and sediment transport.  Even aside 
from the usual problem of not being able to take finite-amplitude effects into 
account without further theory, however, the analysis does not account for the 
existence of plane-bed stability at the higher flow strengths.  

162  Engelund (1970; see also Fredsøe, 1974, and Engelund and Fredsøe, 
1974), in a somewhat different approach also involving an eddy-viscous fluid, but 
taking account of the distinction between suspended-load transport and bed-load 
transport, was able to account well for the transition from dunes to plane bed as a 
function of both grain size and flow strength.  Richards (1980), using a more 
realistic description of the structure of turbulence near the bed, was able to 
account for the separate existence of ripples and dunes by predicting the 
occurrence of two separate modes of instability, one (for ripples) dependent on 
the bed roughness and the other (for dunes) dependent on the flow depth. More 
recently, McLean (1990) and Li and Mendoza (1997) have gone beyond linear 
stability analysis to account also for nonlinear finite-amplitude effects.  Even 
more recently, Jerolmack et al. (2006) have developed a model of bed-form 
development that unifies the dynamics of ripples and dunes. 
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Are Ripples and Dunes Different? 

163  Of course, the answer is “yes”:  dunes are larger than ripples.  I should 
rephrase the question:  Are the dynamics of ripples and dunes different?  Most 
investigators have assumed that the answer to that question is also “yes”.  Those 
who have attempted to account for the existence of ripples and dunes by means of 
a stability analysis (see the preceding section) have invoked a short-wavelength 
instability that leads to the development of ripples and a long-wavelength 
instability that leads to the development of dunes.  In that approach, the key to the 
development of ripples is a spatial (downstream) lag between bed shear stress and 
sediment transport rate (that is, the sedimentary transport rate lags the bed shear 
stress) in the case of ripples, and a spatial lag between bed shear stress that also 
involves suspended-load transport, in the case of dunes. 

164  It has commonly been believed that there is a gap in spacing between 
what are considered to be ripples and what are considered to be dunes.  In 
reporting a consensus among the “experts”, Ashley (1990) chose a cutoff of 0.6 m 
spacing for the boundary between ripples and dunes.  There indeed seems to be a 
paucity of bed forms with spacings in the range between a few decimeters and one 
meter (Figure 12-42). 

165  Clearly there is not a complete absence of ripple or dune bed forms in 
that range—but it is still uncertain whether there is a continuum in spacing 
between undoubted ripples and undoubted dunes, or whether those intermediate 
cases are stunted dunes (in very shallow flow) or newly developing dunes.  The 
matter has not yet reached the stage of a general consensus.  There have been only 
a few studies aimed particularly at describing the transition between ripples and 
dunes (Boguchwal and Southard, 1990; Bennett and Best, 1996; Lopez et al., 
2000; Robert and Uhlman, 2001).  The range of mean flow velocity, for a given 
flow depth, over which the transition is completed is rather narrow.  Within that 
narrow range, there is a large change in bed-form geometry as well as the 
associated flow characteristics.  What all of these studies seem to agree upon is 
that there is a real dynamical distinction between ripples and dunes. 
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Figure 12-42.  Plot of bed-form height vs. bed-form spacing.  The dashed line is 
the maximum best-fit power-law relationship, and the solid line is the mean best-
fit power-law relationship.  (From Jerolmack et al., 2006, based on the work of 
B.W. Flemming.) 

 
 

 

OSCILLATORY-FLOW AND COMBINED-FLOW BED 
CONFIGURATIONS  

Introduction  
166  As described in Chapter 6, water-surface waves propagating in water 

much shallower than the wavelength cause a back-and-forth motion of the water 
at the bottom.  If the maximum speed of the water (which is attained in the middle 
of the oscillation) exceeds the threshold for sediment movement, oscillatory-flow 
bed forms develop.  This is common in the shallow ocean.  Swell from distant 
storms causes bottom oscillatory motion even though the weather is fine and calm 
locally.  More importantly, bottom-water motions under large storm waves cause 
bed forms also.  In that situation there is likely to be a non-negligible 
unidirectional current as well, resulting in a combined flow.  

 
A Tank Experiment on Oscillatory-Flow Bed Configurations  

167  There are three ways to make oscillatory-flow bed configurations in 
the laboratory.  One is to build a big long tank and make waves in it by putting a 
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wave generator at one end and a wave absorber at the other end (Figure 12-43).  
The generator does not need to be anything more than a flap hinged at the bottom 
and rocked back and forth in the direction of the tank axis at the desired period.  
This arrangement makes nice bed forms, but the trouble is that you are limited to 
short oscillation periods. 
 

 
Figure 12-43.  Making an oscillatory-flow bed configuration in a wave tank. 

 
Figure 12-44.  Making an oscillatory-flow bed configuration in an oscillatory-
flow duct. 

 
Figure 12-45.  Making an oscillatory-flow bed configuration in an oscillatory bed 
beneath still fluid. 
 

 

168  Another good way to make oscillatory-flow bed configurations is to 
build a horizontal closed duct that connects smoothly with reservoir tanks at both 
ends, fill the whole apparatus with water, and then put a piston in contact with the 
water surface in one of the reservoir tanks and oscillate it up and down at the 
desired period (Figure 12-44).  This allows you to work with much longer-period 
oscillations, but there is the practical problem that the apparatus has its own 
natural oscillation period, and if you try to make oscillations at a much different 
period you have to fight against what the duct wants to do, and that means large 
forces.   
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169  The third way should seem elegant and ingenious to you:  place a 
sand-covered horizontal tray at the bottom of a large tank of water, and oscillate 
the tray back and forth underneath the water (Figure 12-45).  The problem is that 
the details of particle and fluid accelerations are subtly different from the other 
two devices, and it turns out that the bed configurations produced in this kind of 
apparatus do not correspond well with those produced in the other two kinds of 
apparatus.  

 

 
 

Figure 12-46.  Sequence of oscillatory-flow bed configurations sin fine sands with 
increasing oscillation velocity, for an oscillation period of several seconds. 

 
 
170  Imagine making an exploratory series of runs in an oscillatory-flow 

duct of the kind shown in Figure 12-44 to obtain a general idea of the nature of 
oscillatory-flow bed configurations.  Work at just one oscillation period, in the 
range from three to five seconds.  Start at a low maximum oscillation velocity and 
increase it in steps.  Figure 12-46 shows the sequence of bed configurations you 
would observe. 

171  Once the movement threshold is reached, a pattern of extremely 
regular and straight-crested ripples develops on a previously planar bed.  The 
ripples are symmetrical in cross section, with sharp crests and broad troughs.  In 
striking contrast to unidirectional-flow bed configurations, the plan pattern is 
strikingly regular:  ripple size varies little from ripple to ripple, and the ripples are 
straight and regular.  At fairly low velocities the ripples are relatively small, with 
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spacings of no more than several centimeters, but with increasing velocity the 
become larger and larger.  

172  In a certain range of moderate velocities, the ripples become 
noticeably less regular and more three-dimensional, although they are still 
oriented dominantly transverse to the oscillatory flow.  These three-dimensional 
ripples continue to grow in size with increasing velocity, until eventually they 
become flattened and are finally washed out to a planar bed.  Therefore, just as in 
unidirectional flows, rugged bed configurations pass over into a stable plane-bed 
mode of transport with increasing velocity. 

173  Oscillatory-flow bed configurations at longer oscillation periods are 
much less well studied, especially at high oscillatory velocities.  Some comments 
on bed configurations produced under those conditions, which are very important 
in natural environments, are given in a later section. 

 
Dimensional Analysis  

174  Assume again, as we did earlier with unidirectional flow bed 
configurations, that the sediment is described well enough by its density ρs and 
average size D.  The oscillatory flow is specified by any two of the following 
three variables:  oscillation period T, orbital diameter do (the distance traveled by 
water particles during one-half of an oscillation), and maximum orbital velocity 
Um; I’ll use T and Um here.  As with unidirectional-flow bed configurations, we 
also need to include ρ, μ, and γ '.  The number of independent variables is seven, 
so we should expect a set of four equivalent dimensionless variables.   

175  One dimensionless variable can again be the density ratio ρs/ρ, and the 
other three have to include Um, T, and D as well as ρ, μ, and γ '.  Adopting the 
same strategy as for unidirectional flow, we can form a dimensionless maximum 
oscillation velocity, a dimensionless oscillation period, and a dimensionless 
sediment size: 

 

( ρ2

μγ ' )1/3
Um ,  (γ '2

ρμ )1/3
T ,  (γ 'ρ

μ2  )1/3
D 

 
Then we can plot another three-dimensional graph to show the stability fields of 
oscillatory-flow bed phases, just as for unidirectional-flow bed phases (Figure 12-
47).  Relationships are best revealed by looking at a series of velocity–period 
sections through the graph for various values of sediment size (Figure 12-47).  
Figure 12-48 shows three such sections, one for very fine sands, 0.1–0.2 mm 
(Figure 12-48A), one for medium sands, 0.3–0.4 mm (Figure 12-48B), and one 
for coarse sands (0.5–0.6 mm (Figure 12-48C).  As with the graphs for 
unidirectional flows presented earlier, the axes are labeled with the 10°C values of 
velocity and period corresponding to the actual dimensionless variables.  The data 
shown in Figure 12-48 are from laboratory experiments on oscillatory-flow bed 
configurations, made in both wave tanks and oscillatory-flow ducts, by several 
different investigators.       
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Figure 12-47.  The velocity–period–size diagram, showing velocity–period 
sections for three sediment sizes. 

 
 
176  In each section in Figure 12-48, there is no movement at low velocities 

and a plane-bed mode of transport at high velocities.  The intervening stability 
region for oscillation ripples narrows with decreasing oscillation period.  As with 
ripples in unidirectional flows, there really are two different kinds of lower 
boundary of the stability field for oscillation ripples:  one represents the threshold 
for sediment movement on a preexisting planar bed, and the other represents the 
minimum oscillation velocity needed to maintain the equilibrium of a preexisting 
ripple configuration.  Existing data are not extensive enough to define the exact 
nature of these boundaries. 
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Figure 12-48.  Velocity–period sections for sand sizes of A) 0.01–0.02 mm and B) 
0.50–0.65 mm sand.  Symbols for spacing:  solid diamonds, < 0.100 mm; open 
circles, 0.100–0.175 mm; solid circles, 0.175–0.30 mm; open triangles, 0.30–0.55 
mm; solid triangles, 0.55–1.00 mm; open squares, 1.00–1.75 mm; solid squares, > 
1.75 mm.  Horizontal tick marks indicate a three-dimensional configuration.  
Symbols without tick marks indicate a two-dimensional configuration, except that 
circles with enclosed X’s represent a three-dimensional configuration for which a 
characteristic ripple spacing was not measured.  Vertical tick marks indicate 
ripples whose spacing is much greater than duct width, so that the three-
dimensional geometry of the ripples could not be observed.  (From Southard, 
1991.) 
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177  The most prominent feature of each of the sections in Figure 12-48 is 
the regular increase in ripple spacing from lower left to upper right, with 
increasing velocity and period.  The contours of ripple spacing are close to being 
parallel to the lines of equal orbital diameter except near the transition to plane 
bed. 

178  An important feature of the section for fine sands is a transition from 
extremely regular straight-crested ripples (which I will call two-dimensional 
ripples) at relatively low oscillation velocities to rather irregular ripples (which I 
will call three-dimensional ripples) with short and sinuous crest lines at relatively 
high oscillation velocities.  The most three-dimensional bed configurations show 
only a weak tendency for flow-transverse orientation, and it is difficult or 
impossible to measure an average ripple spacing.  In medium sands (Figure 12-
48B) the transition from two-dimensional ripples to three-dimensional ripples 
takes place at velocities closer to the transition to plane bed, and the tendency for 
three-dimensionality is not as marked as in fine sands. 

179  Superimposed smaller ripples are prominent in the troughs and on the 
flanks of the larger ripples formed at long oscillation periods and high oscillation 
velocities in fine sands.  These small superimposed ripples have spacings of about 
7 cm, and they seem to dynamically related to ripples in unidirectional flows.  The 
one-way flow during each half of the oscillation lasts long enough and transports 
enough sediment so that a pattern of current ripples becomes established in local 
areas on the bed.  The flow in the other direction reverses the asymmetry of these 
small ripples but does not destroy them. 

180  Experimental data are least abundant for long periods and high 
velocities, but preliminary data show the existence of three-dimensional rounded 
bed forms with spacings of well over a meter in fine sands under these conditions.  
In contrast to the smaller two-dimensional ripples, these large ripples are not 
static but show a tendency to change their shape and shift their position with time, 
even after the bed configuration has stopped changing on the average.  

181  In coarse sands (Figure 12-48C), no experiments have been made at 
the longest periods and highest velocities, but evidence from observations in 
modern shallow marine environments, and also from the ancient sedimentary 
record, suggests that ripples in coarse sands are two-dimensional over the entire 
range of periods and velocities characteristic of natural flow environments. 

182  The flow over oscillation ripples is characteristic (Figure 12-49).  
During half of the oscillation cycle, the flow separates over the sharp crest of the 
ripple, putting abundant suspended sediment in suspension in the separation 
vortex over the downflow side.  As the flow reverses, the vortex is abruptly 
carried over the crest of the ripple and deposits its suspended sediment.  Flow 
separation is then rapidly reestablished on the other side of the ripple, and a new 
vortex develops.  For this reason, these ripples have been called vortex ripples. 
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Figure 12-49.  Sediment transport in suspension over the crest of an oscillation 
ripple. 

 

 
183  Purely oscillatory flows that involve a discrete or continuous range of 

oscillatory components with different directions, periods, and velocities must be 
common in the shallow ocean.  For example, when a storm passes a given area, 
strong winds tend to blow from different directions at different times.  Some time 
is needed for the sea state to adjust itself to the changing wind directions, and 
during those times the sea state is complicated, with superimposed waves running 
in different directions.  The nature of bed configurations under even simple 
combinations of two different wave trains is little known.  Much more 
observational work needs to be done on this topic.  

 
Combined-Flow Bed Configurations  

184  So far we have considered only the two “end-member cases” of flows 
that make bed configurations.  Even aside from the importance of time-varying 
unidirectional and oscillatory flows, and of purely oscillatory flows with more 
than just one oscillatory component, there is an entire range of combined flows 
that generate distinctive bed configurations.  Observations in the natural 
environment are scarce, and systematic laboratory work (Arnott and Southard, 
1990; Yokokawa, 1995; Dumas et al., 2005) has so far explored only a small part 
of the wide range of relevant conditions.   This section is therefore necessarily 
shorter than the previous sections.   Up to now, systematic observations have been 
made only for combined flows in which a single oscillatory component is 
superimposed on a current flowing with the same orientation as the oscillation.   
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There is therefore still a major gap in our knowledge of combined-flow bed 
configurations. 

 

 
 
Figure 12-50.  Ways of representing combined-flow bed configurations 
graphically. 
 
 
185  Figure 12-50 is an inadequate attempt to provide a conceptual 

framework for thinking about combined-flow bed configurations.  Ideally we 
would like to be able to plot observational data on combined-flow bed 
configurations on a graph with axes representing the four important independent 
variables:  oscillatory velocity, unidirectional velocity, oscillation period, and 
sediment size.  Unfortunately it is impossible for human beings to visualize four-
dimensional graphs.  A substitute approach (Figure 12-50) is to imagine one or 
the other of two equivalent kinds of graphs: 

 
•  a continuous series of three-dimensional graphs with the two velocity 

components and sediment size along the axes, one such graph for each 
value of oscillation period; or  

•  a continuous series of three-dimensional graphs with the two velocity 
components and oscillation period along the axes, one such graph for each 
value of sediment size.  

 
186  Systematic laboratory experiments on combined-flow configurations 

have been carried out by Arnott and Southard and, more recently, covering wider 
range of flow and sediment conditions, by Dumas et al. (2005).  The experiments 
by Dumas et al. (2005) were done in large oscillatory-flow ducts with oscillation 
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periods ranging from about 8 s to 11 s (scaled to 10°C water temperature), with 
well-sorted sediments ranging in size from 0.10 to 0.23 mm (scaled to 10°C water 
temperature).  Figure 12-51 shows three phase diagrams, for three combinations 
of oscillation period and sediment size, showing data points and phase 
boundaries.  The boundaries within the field for ripples are gradual rather than 
abrupt.  Bear in mind, when looking at these diagrams, that they are still an 
extremely “thin” representation of the graphic framework shown in Figure 12-50. 

 

 
 

Figure 12-51.  Bed-phase diagrams for combined-flow bed phases, with 
oscillatory velocity component on the vertical axis and unidirectional velocity 
component on the horizontal axis.  A) sediment size 0.14 mm, oscillation period 
10.5 s; B) sediment size 0.14 mm, oscillation period 8.0 s; C) sediment size 0.22 
mm; oscillation period 10.5 s. 

 

187  Here are some of the features of Figure 12-51. At combinations of low 
oscillatory velocities and low unidirectional velocities, there is no sediment 
movement.  At combinations of high oscillatory velocities and high unidirectional 
velocities, a planar bed with strong sediment movement is the stable bed 
configuration.  Note that when even a small unidirectional component is present, 
the oscillatory velocity for the transition from ripples to plane bed is substantially 
lower than in purely oscillatory flow. 

188  In the lower part of the region of ripple stability, the ripples are 
relatively small.  Only a small unidirectional component is needed to make the 
small ripples fairly asymmetrical.  Except when the unidirectional component is 
very weak, small combined-flow ripples are not greatly different in geometry 
from ripples in purely unidirectional flow. 
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189  In the upper part of the region of ripple stability, the ripples are 
relatively large.  Only a small unidirectional flow component is needed to make 
the large three-dimensional oscillatory-flow bed forms produced at these 
oscillation periods and sediment sizes noticeably asymmetrical.  For relatively 
large oscillatory velocities, especially in the finer sand size, the bed forms acquire 
a three-dimensional hummocky appearance; this region is shown by the shading 
in Figures 12-51A, B, and C; it is a feature that seems to become superimposed on 
the symmetrical to symmetrical large combined-flow ripples under those values of 
the velocity components.   

 

 
 

Figure 12-52.  Hypothetical extrapolation of the results shown in Figure 12-51 to 
a wider range of combined-flow conditions.  (From Southard, 1991.) 

 
 
190  At unidirectional velocities greater than are shown in this graph, the 

field for large combined-flow ripples must pinch out, because small ripples are 
known to be the only stable bed configuration in purely unidirectional flows in 
these fine sand sizes.  Figure 12-52 shows a speculative extrapolation of Figure 
12-51 to higher unidirectional velocities.  The effect of an increasingly strong 
oscillatory velocity component on unidirectional-flow dunes in medium and 
coarse sands is an intriguing problem for which no experimental data are yet 
available. 

 

 

 429



 
 
 
 

Figure 12-53.  Relationship between large-sale ripples in purely oscillatory flow 
and dunes in purely unidirectional flow. 

 

 
191  When the oscillation period is large, medium to high oscillation 

velocities produce large symmetrical ripples.  Even a slight unidirectional 
component is known (e.g., Arnott and Southard,  1990; Dumas et al., 2005) to 
make these large ripples noticeably asymmetrical, to the point where they are not 
greatly different in geometry and internal stratification from unidirectional-flow 
dunes.  That leads to an important question:  what do the large-scale bed forms in 
the intermediate range of flow conditions and sediment sizes look like?  There has 
been almost no systematic study of such bed forms, and yet deductively it seems 
that they should be important, and that  a lot of the cross stratification we see in 
the ancient sedimentary record must have been produced under such conditions.  
Figure  

 
WIND RIPPLES 

 
Introduction 

 
192  When a sand-moving wind lows across a surface of loose sand, wind ripples 

soon make their appearance.  In their classic manifestation, wind ripples are almost 
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perfectly straight-crested low ridges extending for long distance transverse to the wind.  
In places, a wind ripple ends abruptly, and in other places there are “tuning fork” 
junctions at which a single ripple branches into two.  Ripple spacing range mostly 
between a few centimeters and ten centimeters—although in coarser particle sizes the 
spacing increases up to a few meters and the ripple become much less regular in their 
geometry.  Such ripples have been called granule ripples.  Upwind (stoss) surfaces of 
common wind ripples have slope angles of X, and downwind(lee surface have slopes of 
X, much less than the angle of repose for loose sand.  Crests as well as troughs are 
rounded.  As with subaqueous current ripples, wind ripples move downwind at speeds 
orders of magnitude slower than the driving wind.  In contrast to subaqueous current 
ripples, particle size at the crests of the ripples are coarser than in the troughs.  It is in the 
troughs that finer particles—of very fine sand size down into silt size—find resting 
places, sheltered from the wind. 

193  As with so many aspects of eolian sedimentation, modern study of wind 
ripples began with Bagnold (1941), who studied them both in the field and in laboratory 
wind tunnel.  (It is especially easy to make wind ripples even in a short wind tunnel.)  A 
later classic paper is that by Sharp (1963).  Two of the most extensive wind-tunnel 
studies of wind ripples are those of Seppälä and Lindé (1978) and Walker (1981).  In 
what to my knowledge is the most extensive and systematic wind-tunnel study of wind 
ripples to date, Walker (1981) found that ripple spacing increases with both mean particle 
size and wind velocity, and, for a given particle size, ripple spacing increases as the 
sorting become less good. 

194  The dynamics of wind ripples has had a long history of controversy.  Bagnold 
theorized that the spacing of wind ripples was set by a certain “characteristic” saltation 
jump length.  Later workers, beginning with Sharp (1963), rejected Bagnold’s concept 
and emphasized the role of surface creep, driven by saltation impacts, in forming and 
maintaining the ripples.  This line of thought culminated in a stability analysis of ripple 
development by Anderson (1987).  A rather different approach to wind ripples was taken 
by Werner and Gillespie (1993) and by Landry and Werner (1994).  

195  In recent years, physicists and applied mathematicians have been attracted to 
the dynamics of wind ripples, perhaps in part because it is such an intriguing example of 
dynamical self-organization, and perhaps in part because it lends itself to theoretical and 
numerical modeling in which the messiness of turbulence does not have a direct effect on 
the process.  This interest has resulted in numerous papers, published mainly in physics 
periodicals; see, in particular, papers by Nishimori and Ouchi (1993), Ouchi and 
Nishimori (1995), Prigozhin (1995), Stam  (1996), Hoyle and Woods (1997), Hoyle and 
Mehta (1999), Valance and Rioual (1999), Terzidis et al. (1998), Kurtze et al. (2000), 
Valdewalle and Galam (2000) Miao et al. (2001), Niño et al. (2002), and Yizhaq et al. 
(2004).  In contrast, observational studies of wind ripples seem to have been scarce in 
recent times; see Andreotti et al. (2006). 

 
EOLIAN DUNES 

 
Introduction 
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196  In areas covered widely by movable sand, the wind shapes the sand into large-
scale features called dunes.  In contrast to the subaqueous case, for which there is 
controversy about the dynamical distinction between ripples and dunes, it is clear that 
there is a fundamental dynamical distinction between wind ripples and eolian dunes.  
This was first made  explicit in a widely cited paper by Wilson (1972) (Figure 12-54).  
Eolian dunes range in spacing from many meters, at a minimum, to thousands of meters.  
There seems to be no upper limit to dune size, given sufficient sand and a sufficient reach 
on which the wind can do its work.  For a thorough exposition of eolian dune types, see 
Pye and Tsoar (1990). 

 
 

Figure by MIT OpenCourseWare. 
 

Figure 12-54.  Bed-form spacing λ against P20, the coarse-twentieth-percentile particle 
diameter.  A = wind ripples, B = dunes, C = draas.  (From Wilson, 1972.) 

 

 
197  In sharp contrast to subaqueous dunes, the shapes of eolian dunes, and their 

orientation elative to the sand-moving wind, range very widely.  Features that are 
classified under the term dune range from those that are strictly transverse to the wind, to 
those that are extremely regular in geometry and are closely parallel to the wind—hence 
the distinction between transverse dunes and longitudinal dunes.  In regions where the 
winds are highly variable in direction, star dunes, with arms oriented in various 
directions, form.  Smaller dunes can be superimposed upon larger dunes. 

198  A thought experiment seems in order here.  In the case of subaqueous dunes, 
much of what we know comes from studies of dunes generated by unidirectional flows of 
water under equilibrium conditions in flumes.  In the case of eolian dunes, no 
experimental programs of that sort have ever been conducted, to my knowledge at least.  
The basic problem is that because of the minimum size of dunes is so large, it would take 
an extraordinarily large wind tunnel to make experiments on the equilibrium 
characteristics of eolian dunes.  And even then, of course, the presence of the roof in the 
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wind tunnel would make the results less applicable to the natural environment, in which, 
in the context of eolian dunes, is effectively unlimited in height. 

199  What would we find if we built a long quonset-hut-like building, perhaps a 
large fraction of a kilometer long, with a roof a few tens of meters high, over a  deep bed 
of loose sand, and passed a controlled, steady wind through the tunnel, perhaps by means 
of a propeller driven by an old-fashioned airplane engine mounted at the downwind end 
of the tunnel, while at the same time adding new sand at the upwind end of the tunnel?  
Presumably, dunes would develop; how would their spacing depend on wind velocity and 
sand size?  Would they grow to the point of constriction by the height of the tunnel for all 
wind speeds, or would their spacing increase with wind speed?  Would dune size vary 
with sand size?  The answers to those questions, which are fairly clear for subaqueous 
dunes, are not known. 

200  Nature provides us with much less controlled conditions:  everywhere on 
Earth, even in the least variable climatic conditions, the wind varies in both speed and 
direction.  That variability makes any conclusions about how dune geometry depends on 
wind conditions fraught with uncertainty. 

201  In areas where the availability of movable sand is limited, eolian dunes take 
the form of barchans:  crescent-shaped dunes, with horns pointing downwind, that move 
across a non-moveable surface.  Sand is supplied to the barchans from upwind; the 
barchans lose sediment, at about the same rate, from the downwind tips of the horns.  
Barchans are not restricted to eolian environments:  it is easy to make miniature barchans 
in water flows in a flume in which limited quantities of fine sand or silt move across a the 
rigid floor of the flume. 

202  Are eolian dunes and subaqueous dunes identical, in terms of the fundamental 
dynamics?  This question is not explicitly addressed in the literature, to my knowledge, 
but I would speculate that the specialists, if asked, would say that they indeed are.  The 
only way to know for sure would be to make a systematic series of observations over the 
range of intermediate ratios of particle density to fluid density—and that has never been 
done and is unlikely ever to happen. 
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