
CHAPTER 2 
    

FLOW  PAST  A  SPHERE  I:  DIMENSIONAL ANALYSIS, 
REYNOLDS NUMBERS, AND FROUDE NUMBERS 

 
 
 

INTRODUCTION  
1  Steady flow past a solid sphere is important in many situations, both in 

the natural environment and in the world of technology, and it serves as a good 
reference case for extension to more complicated situations, involving unsteady 
flows and/or nonuniform flows and/or nonspherical bodies.  It is also an excellent 
starting point for development of a number of important principles and techniques 
that are essential for later development in these notes.  In particular, I hope to be 
able to convince you of the importance and utility of careful dimensional 
reasoning about flows of fluids. 

2  You can think in terms of fluid flowing past a stationary sphere, or of a 
sphere moving through stationary fluid.  The two cases are almost, but not quite, 
equivalent.  And in the latter case you could imagine the sphere being moved 
through the fluid in three different ways:   fastened to a rigid strut, or towed with a 
flexible line, or pulled downward through the fluid under its own weight.  For 
now, do not worry about these distinctions; just view the fluid from the standpoint 
of the sphere.  I will return to the differences briefly later.  For the sake of 
definiteness, assume here that the sphere is towed or pushed through still fluid.  
All that is said here about the flow is then with reference to a point fixed relative 
to the moving sphere. 

3  Just from considerations of space and motion, it is clear that the 
approaching fluid must both move faster and be displaced laterally as it flows past 
the sphere.  On the other hand, the no-slip condition requires that the fluid 
velocity be zero everywhere at the surface of the sphere; this implies the existence 
of gradients ( that is, spatial rates of change) of velocity, very sharp under some 
conditions, at and near the surface of the sphere.  These velocity gradients 
produce a shear stress on the surface of the sphere; see Equation 1.8.  When 
summed over the surface, the shear stress exerted by the fluid on the sphere 
represents the part of the total drag force on the sphere called the viscous drag.  
Your intuition probably tells you (correctly in this case) that the pressure of the 
fluid, the normal force per unit area, is greater on the front of the sphere than on 
the back.  The sum of the pressure forces over the entire surface of the sphere 
represents the other part of the drag force, called the pressure drag or form drag.   
You will see later that the relative importance of viscous drag and pressure drag, 
as well as the qualitative flow patterns and the distance out into the fluid the 
sphere makes its presence felt, are greatly different in different ranges of flow. 

4  You can see now that even in such a seemingly simple flow as the 
passage of a steady and uniform approach flow around a smooth sphere there is a 
great variation in flow phenomena.  Complexity of this kind in deceptively simple 
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flows is common in fluid dynamics; you need to be on your guard against 
theorizing about phenomena of fluid flow without the ground truth of experiment 
and observation. 

 
WHICH VARIABLES RE IMPORTANT?  A  

5  Think first about the resultant drag force FD exerted on the sphere by the 
fluid (Figure 2-1).  To account fully for the value assumed by FD  for a given 
sphere in a given fluid, we have to specify the values of certain other variables.  
(This carefully phrased sentence should not be interpreted as implying that FD is 
necessarily the “dependent variable” in the problem; for a sphere settling under its 
own weight, it is more natural to think of FD as an independent variable and 
settling velocity as the dependent variable.  What is important here is that there 
 

 
 

Figure 2-1.  The drag force FD on a sphere moving relative to a viscous fluid. 
 

 
is a one-to-one correspondence between the values of FD and the values of those 
other variables, irrespective of their dependence or independence.  That said, 
however, for convenience I will refer to such variables as independent variables.)  
The velocity U of the sphere relative to the fluid is important because it affects the 
shear in the fluid near the surface of the sphere, and therefore by Equation 1.9 the 
shear stress.  Sphere diameter D is important for the same reason.  Viscosity μ is 
important because it determines the shear force associated with a given rate of 
shear.  Fluid density ρ must also be included, because the forces associated with 
the accelerations in the fluid depend upon ρ:  the response of a body to a force 
exerted on it depends on the mass of the body; that is the essence of Newton’s 
second law.  If the sphere is in steady motion far from solid walls or a free 
surface, you can assume that no other variables are important.  So 

 

FD = f (U,  D,  ρ,  μ)       (2.1) 
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where f is some function with one or more terms involving the four independent 
variables (Figure 2-1).  (I will often use the same symbol f for unrelated functions.  
In Chapter 4, f is also used for a quantity called the friction factor.)  

6  You might reasonably ask why neither sphere density nor acceleration of 
gravity are on the list.  These are relevant only if the sphere settles under its own 
weight, and then only because they determine the weight of the sphere, to which 
FD is then equal after a steady state of settling is attained.  Variables that enter the 
problem only by their effect on other variables already on the list and not because 
of some separate effect need not be included in the analysis.  And there is no 
reason to think that either of these has any such significance.  

7  If we are lucky in problems like this, we can use theory to derive an 
analytical form for the function in Equation 2.1 that agrees well with observation.  
If not, we have to attempt a numerical solution or rely solely on experiment.  For 
flow past a sphere there is indeed an analytical solution, described later in this 
chapter, that agrees beautifully with experimental data, but it holds over only a 
limited range of the independent variables; over the rest of the range we can 
obtain the function by experiment, as is commonly the case in problems of flow 
of real fluids.  With flow past the sphere as an example we need to consider how 
we can best go about organizing both data and thought by resorting to 
dimensional reasoning. 

 
SOME DIMENSIONAL REASON NG, AND ITS CONSEQUENCES I 

8  Like every physically correct equation, Equation 2.1 must represent 
equality not only of magnitudes but also of dimensions.  In most mechanical 
systems three basic dimensions are needed to express forces, motions, and system 
properties; these are usually taken to be mass (M), length (L), and time (T).  So 
whatever the form of the term or terms on the right side of Equation 2.1, the 
variables U, D, ρ, and μ must combine in such a way that each term has the 
dimensions of force, because the left side has the dimensions of force.  The 
following list gives the dimensions of each of the five variables involved in flow 
past a sphere, in terms of mass M, length L, and time T: 

 
FD — ML / T2 
U —  L / T 
D —  L 
ρ  — M / L3 

μ  — M / LT 
 

The only variable here whose dimensions are not straightforward is μ; the 
dimensions M/LT are obtained by use of Equation 1.8, by which μ is defined.  

9  It is advantageous to rewrite equations like Equation 2.1 in dimensionless 
form.  To do this, first make the left side dimensionless by dividing FD by some 
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product of independent variables that itself has the dimensions of force.  Using the 
list of dimensions above, you can verify that ρU2D2 has the dimensions of force: 

 

ρU2D2  ——  (M/L3)(L/T)2(L)2 = ML/T2  
 

So dividing the left side of Equation 2.1 by ρU2D2 makes the left side of the 
equation dimensionless.  The result, FD/ρU2D2, can be viewed as a 
dimensionless form of FD.  That leaves the right side of Equation 2.1 to be made 
dimensionless.  There is one and only one way the four variables U, D, ρ, and μ 
can be combined into a dimensionless variable, namely ρUD/μ: 

 

ρUD/μ   (M/L3)(L/T)(L)/(M/LT)   M, L, T cancel  
 

(That statement is not strictly true—but all the other possibilities are just ρUD/μ 
raised to some power, and they are not independent of ρUD/μ.)  So whatever the 
form of the function f, the right side of the dimensionless form of Equation 2.1 
can be written using just one dimensionless variable: 

 

FD
ρU2D2  = f 

⎝
⎜
⎛

⎠
⎟
⎞ρUD

μ
                (2.2) 

  
10  Equation 2.2 is an equivalent but dimensionless form of Equation 2.1.  

The great advantage of the dimensionless equation is that it involves only two 
variables—a dependent dimensionless variable FD/ρU2D2 and an independent 
dimensionless variable ρUD/μ—instead of the original five.  Think of the 
enormous saving in effort this implies for an experimental program to 
characterize the drag force.  If you had to measure FD as a function of each one of 
the four variables while holding the other three constant, you would generate 
mountains of data and graphs.  But Equation 2.2 tells you that U, D, ρ, and μ need 
only be varied so as to make ρUD/μ vary.  All of the experimental points for 
FD/ρU2D2 obtained by varying ρUD/μ should plot as a curve in a two-
dimensional graph with these two variables along the axes.  Whatever the values 
of U, D, ρ, and μ, all possible realizations of flow past a sphere are expressed by 
just one curve.  This curve is shown in Figure 2-2 together with some of the 
experimental points that have been used to define it.  The physics behind the 
curve is discussed in Chapter 3, after more background in the principles of fluid 
dynamics.  And you could find the curve by varying only one of the four variables 
U, D, ρ, and μ—although you may not be able to get a very wide range of values 
of ρUD/μ by varying only one of those variables.  A fairly small number of 
experiments involving values of the original independent variables that combined 
to span a wide range of ρUD/μ would suffice to characterize all other possible 
combinations of independent variables.  This is because each point in the 
dimensionless graph represents a great many different possible combinations of 
the original variables—an infinity of these, in fact.  You thus gain a far-reaching 
predictive capability on the basis of relatively little observational effort.  
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Figure 2-2.  Plot of dimensionless drag force vs. Reynolds number for flow of a 
viscous fluid past a sphere.  The dimensionless drag force is expressed in the form 
of a conventionally defined drag coefficient rather than as the dimensionless drag 
force FD; see further in the text.  Experimental points are from several sources, 
and are somewhat generalized.  Some of the data points are from settling of a 
sphere through a still fluid, and others are from flow past a sphere held at rest.  
For a more detailed plot, see, for example, Schiller (1932). 

 

 

11  A skeptic might find all this to be too good to be true.  But the fact is 
that this is how things work, and the analysis of flow past a sphere is just one 
good example.  A note of caution is in order, however.  It is prudent to vary as 
many of the variables over as wide a range as possible; this does not take an 
enormous number of observations, and it is a check on the correctness of your 
analysis.  You will see below in more detail that if there is a larger number of 
important variables than you think, your data points would form a scattered band 
rather than a single curve.  Then if you varied just one variable to try to find the 
curve, you would indeed get a curve, but it would not be the curve you were after; 
you would be missing the scatter that would manifest itself if you varied the other 
variables as well.  

12  Several notes are in order here:  

(1) Variables of the form ρUD/μ are called Reynolds numbers, usually 
denoted by Re. Whenever both density and viscosity are important in a problem 
and both a length variable and a velocity are involved, a Reynolds number can be 
formed and used.  There are thus many different Reynolds numbers, with different 
length and velocity variables depending on the particular problem.  You will 
encounter others in later chapters.  

(2) For the steady flow we have assumed, the variables U, D, ρ, and μ 
characterize not only everything about the distributions of shear stress and 
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pressure over the entire surface of the sphere, which add up to FD, but also the 
distributions of shear stress, pressure, and fluid velocity at every point in the 
surrounding fluid.  Because ρUD/μ replaces these four variables on the right side 
of Equation 2.2, the same can be said of the Reynolds number.  Anything about 
forces and motions you might want to consider can be viewed as being specified 
completely by the Reynolds number.  

 

 
 
Figure 2-3.  An example of scale modeling:  using flows around a small sphere to 
model flow around a large sphere.  (The object in the lower right is supposed to 
be someone’s fingertip.) 
 

 
(3) There is a further important consequence of the fact that each point on 

the curve of FD/ρU2D2 vs. ρUD/μ represents an infinity of combinations of U, D, 
ρ, and μ.  Suppose that you wanted to find the drag force exerted by a certain flow 
on a sphere that is too large to fit into your laboratory or your basement.  You 
could work with a much smaller sphere by adjusting the values of U, ρ, and μ so 
that ρUD/μ is the same as in the flow in question past the large sphere (Figure 
2-3).  Then from the curve in Figure 2-2 the value of FD/ρU2D2 is also the same, 
and from it you could find the drag force FD on the large sphere by substituting 
the corresponding values of U, D, and ρ.  Or, on the other hand, you could study 
the flow around a very small sphere by use of a much larger sphere, with the same 
complete confidence in the results (Figure 2-3).  This is the essence of scale 
modeling:  the study of one physical system by use of another at a smaller or 
larger physical scale but with variables adjusted so that all forces and motions in 
the two systems are in the same proportions.  Figure 2-3 shows how you might 
use flow around a small sphere with diameter Dm to model flow around a much 
larger sphere with diameter Do.  You would have to adjust the flow velocities Um 
and Uo, as well as the fluid viscosities μm and μo and the fluid densities ρm and ρo,  
so that the Reynolds number Rem, equal to ρmUmDm/μm, in the model is the same 
as the Reynolds number Reo, equal to ρoUoDo/μo, in the large-scale flow.  Then all 
forces and motions are in the same proportion in the two flows, and, specifically, 
the dimensionless drag force, or the drag coefficient, is the same in the two flows.  
Despite the great difference in physical scale, both of the flows are represented by 
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the same point on the graph of drag coefficient vs. Reynolds number, so anything 
about the two flows, provided only that it is expressed in dimensionless form, is 
the same in the two flows.  Each point on the curve of FD/ρU2D2 vs. ρUD/μ 
represents an infinite number of possible experiments, each of which is a scale 
model of all the others! 

(4) In Figure 2-2 the dimensionless drag force is written in a conventional 
form that is slightly different from that derived above:  FD/(ρU2/2)A, where A is 
the cross-sectional area of the sphere, equal to πD2/4.  This differs from 
FD/ρU2D2 by the factor π/8, but its dimensions are exactly the same.  It is usually 
called a drag coefficient, denoted by CD; you can see why that term came about 
by writing 

 

FD = CD  ρU2

2   A              (2.3) 
 

where the factor (ρU2/2)A on the right side has dimensions of force.  The 
functional relationship between dimensionless drag force and Reynolds number in 
Equation 2.2 can be written in an entirely equivalent form using CD: 

 

CD  =  FD
ρU2

2  A
   =  f 

⎝
⎜
⎛

⎠
⎟
⎞ρUD

μ
       (2.4) 

  
(5) There are alternative versions of the dependent dimensionless variable.  

Dividing by ρU2D2 is not the only way to nondimensionalize FD.  You can check 
for yourself that FD/μUD, ρFD/μ2, and FD/μU are other possibilities, obtained by 
combining FD with the four variables ρ, μ, U, and D taken three at a time.  (You 
will see in the next section how to derive such variables.)  Sometimes, as in the 
last two cases, one of the variables drops out; this happens when M or L or T 
appears in only one of the four variables chosen.  Any of these three alternative 
dependent dimensionless variables would serve just as well as FD/ρU2D2 to 
represent the data.  You will see below, however, that sometimes one is more 
revealing than the others. 

 
HOW TO CONSTRUCT DIMENSIONLESS VARIABLES  

13  You may be wondering about how you could have constructed the 
dimensionless variable ρUD/μ on your own instead of having it presented to you.  
Start with a very general product ρaUbDcμd.  The exponents a through d have to 
be adjusted so that the M, L, and T dimensions of the product cancel out.  One of 
the exponents can be chosen arbitrarily, say d = 1, but then a, b, and c have to be 
adjusted by solving three equations, one each for M, L, and T, expressing the 
condition that the product be dimensionless.  Using length as an example, you can 
see from the list of dimensions above that length enters into ρ to the power -3, 
into U to the power +1, into D to the power +1, and into μ to the power -1.  So for 
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the length dimension to cancel out of ρaUbDcμ, the following condition must be 
met:  -3a + b + c -1 = 0.  (Keep in mind that we have already chosen d to be 1.)  
Two more conditions, one for M and one for T, give three linear equations in the 
three unknowns a, b, and c: 

-3a +b +c  -1   =  0   (for L) 
  +a   +1   =  0   (for M)   (2.5) 
  -b   -1   =  0   (for T)  

The solution is a = -1, b = -1, c = -1, so the product takes the form μ/ρUD.  This 
is the inverse of the Reynolds number introduced above.  If d had been taken as -1 
at the outset, the result would have been the Reynolds number itself. 

 
WHAT IF YOU CHOOSE THE WRONG VARIABLES?  

14  What would be the consequences of including an irrelevant variable in 
analyzing the dimensional structure of a problem like that of flow past a sphere?  
Suppose, contrary to fact but just for the sake of discussion, that viscosity is not 
important in determining FD.  Then the functional relationship for FD would be  

 

FD = f(U, D, ρ)       (2.6) 
 

As before, you can start to make this equation dimensionless by forming the same 
dimensionless drag force FD/ρU2D2 on the left-hand side.  But how about the 
right-hand side?  The three variables U, D, and ρ cannot be combined to form a 
dimensionless variable, because there is not enough freedom to adjust exponents 
to make a product UaDbρc dimensionless; this should be clear from the formal 
procedure described above for obtaining ρUD/μ.  Then what takes the place of the 
Reynolds number on the right side?  The answer is that the right side must be a 
numerical constant:  there is no independent dimensionless variable.  So if μ were 
not important in flow past a sphere, the dimensionless force  

FD/ρU2D2 would be a constant rather than a function of the Reynolds number.  
To generalize:  if one original variable is eliminated from the problem, one 
dimensionless variable must be eliminated as well.  In a graph of CD vs. Re the 
experimental points would fall along a straight line parallel to the Re axis, as 
shown schematically in Figure 2-4.  Now look back at the actual graph of CD vs. 
Re in Figure 2-2.  Over a wide range of Reynolds numbers from about 102 to 
greater than 105, CD is nearly independent of the Reynolds number.  Because μ is 
the only variable that appears in the Reynolds number but not in CD, this tells you 
that μ is indeed not important in determining FD at large Re.  The reasons for this 
are discussed in Chapter 3. 
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Figure 2-4.  What the plot of dimensionless drag force vs. Reynolds number for 
flow around a sphere would look like if the viscosity were not important. 
 

 

15  Now you can see why there is some practical advantage to using 
FD/ρU2D2 as the dependent dimensionless variable.  The other three mentioned 
above contain μ, and so in a plot of any one of them against ρUD/μ the segment 
of the curve for which μ is not important would plot as a sloping line rather than 
as a horizontal line, and the unimportance of μ would not be as easy to recognize.  

 

 
 

Figure 2-5.  What the plot of dimensionless drag force vs. Reynolds number for 
flow around a sphere towed near a solid wall in a still body of water would look 
like if the distance of the sphere from the wall is not held constant from trial to 
trial. 

 

 

16  You should also consider the consequences of omitting an important 
variable from consideration.  For example, if you had not been careful to keep the 
sphere well away from the wall of the vessel containing the fluid, you would find 
(Figure 2-5) that the experimental points plot in a scattered band around the curve 
of CD vs. Re in Figure 2-2.  This tells you that some other variable is important in 
determining FD and that you have inadvertently let it vary—assuming, of course, 
that your measurements are free of errors in the first place.  The obvious culprit is 
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y, the distance of the center of the sphere from the wall (Figure 2-6), because the 
proximity of the sphere to the solid wall distorts the pattern of flow around the 
sphere and thus changes the fluid forces on the sphere to some extent.  With y 
included in the analysis, the functional relationship for FD is of the form 

 
 

FD = f (U, D, ρ, μ, y)      (2.7) 
  
 

 
 

Figure 2-6.  Towing a sphere parallel to a nearby solid planar wall. 
 

 
17  In nondimensionalizing Equation 2.7 you should again expect to have a 

dimensionless drag force on the left and the Reynolds number on the right.  But 
what happens to the new variable y?  You can use it to form one more 
independent dimensionless variable, in the same way you formed the Reynolds 
number.  There has to be at least one other such variable, because y has to appear 
somewhere on the right side of the nondimensionalized version of Equation 2.7.  
A natural choice for this new variable is y/D (or D/y).   You could instead form 
another Reynolds number, ρUy/μ.  But only two of the three variables ρUD/μ, 
ρUy/μ, and y/D are independent of each other:  addition of one new independent 
variable to the problem adds only one new independent dimensionless variable.  It 
is also worth pointing out that you can arrive at the second Reynolds number, 
ρUy/μ, by multiplying the first, ρUD/μ, by the new dimensionless variable y/D.  
This is an illustration of the principle that you can always replace a dimensionless 
variable in a set of dimensionless variables by another one formed by multiplying 
or dividing it by one of the others, or with some power or root of one of the 
others.  So in dimensionless form Equation 2.7 is then 

 
 

FD
ρU2D2   =  f (ρUD

μ
 , y

D )      (2.8) 
 
18  The function in Equation 2.8 would plot as a curved surface in a three-

dimensional graph with CD, Re, and y/D along the axes (Figure 2-7).  The two 
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planes perpendicular to the y/D axis in Figure 2-7 show the range over which y/D 
varied in your experiments without your realizing that it is important.  The 
projection of the segment of the surface between these two planes onto the CD–Re 
plane is the band in which your experimental points would fall.  The intersection 
of the surface with the plane y/D = 0, also shown on the projection, represents the 
curve you would have gotten if you had always kept the sphere very far away 
from the wall; it is the same as the curve in Figure 2-2. 

 

 
 

Figure 2-7.  For towing of a sphere parallel to a nearby solid planar wall, data 
from a large number of trials would plot as a surface in a three-dimensional graph 
of drag coefficient, Reynolds number, and ratio of distance from wall to sphere 
diameter.  The graph in the upper right shows, in a plot of drag coefficient vs. 
Reynolds number, two curves corresponding to two different values of the ratio of 
distance from wall to sphere diameter.  These curves are the intersections of the 
full surface with planes parallel to the CD–Re plane. 
 

 
19  You could carry the analysis one step further by moving the sphere 

horizontally just beneath the free surface of a liquid at rest in a gravitational field 
(Figure 2-8).  Of importance now is not only the distance y of the sphere below 
the free surface but also the acceleration of gravity g:  if the movement of the 
sphere distorts the free surface, unbalanced gravity forces would tend to flatten 
the surface again, and surface gravity waves may be generated.  Then 

 

FD = f (U, D, ρ, μ, y, g)    (2.9) 
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Figure 2-8.  Towing a sphere horizontally through a still liquid, not far below the 
free surface of the liquid. 
 

 
This adds still another independent dimensionless variable, and that variable must 
include g.  There are five possibilities: μg/ρU3, ρ2gD3/μ2, ρ2gy3/μ2, U2/gD, and 
U2/gy, plus obvious variants obtained by inversion and exponentiation.  (You 
could try constructing these by combining U, ρ, μ, D, and y three at a time with g 
and going through the procedure described above for Re.  You would also get y/D 
again in the process.)  Any one of these five would suffice to express the effect of 
g on the drag force.  Again only one is independent, because the others can all be 
obtained by combining that one (whichever you choose) with either ρUD/μ or 
y/D.  It would be conventional, in a problem like this, to use U/(gy)1/2 as the added 
independent variable.  The dimensionless form of Equation 2.9 is then 

 
 

FD
ρU2D2   =  f (ρUD

μ
 , U

2

gy  , y
D )     (2.10) 

 
The square root of a variable like U2/gy or U2/gD, with a velocity, a length 
variable, and g, is called a Froude number, usually denoted by Fr.  It is natural, 
although not essential, to use U2/gy  here because then each of the four 
dimensionless variables in the functional relationship can be viewed as being 
formed by combining FD, μ, y, and g in turn with the three variables ρ, U, and D; 
see the following paragraph for details. 

20  The function in Equation 2.10 would plot as a four-dimensional 
“surface” in a graph of CD vs. Re, Fr, and y/D.  It is difficult to visualize such a 
graph.  A good substitute would be to plot a three-dimensional graph for each of a 
series of values of one of the independent dimensionless variables.  The trouble is 
that there is an infinite number of these three-dimensional graphs.  (I remember 
once reading somewhere that to express graphically the relationship between two 
variables you need a page, and to express the relationship among three variables 
you need a book of pages, and to express the relationship among four variables 
you need a library of books.  For five variables you would need a world of 
libraries!) 
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21  Suppose that you had realized at the outset that all seven variables in 
Equation 2.9 are important in the problem.  The systematic way of obtaining four 
dimensionless variables all at once is just an extension of the method described in 
an earlier section for obtaining the Reynolds number.  Form four products by 
choosing three of the seven variables (the “repeating” variables) to be those raised 
to the exponents a, b, and c and using each of the remaining four variables in turn 
as the one that is raised to the exponent 1 (or to any other fixed exponent, for that 
matter).  You can verify for yourself that if you choose ρ, U, and D as the three 
repeating variables, the four products ρaUbDcFD, ρaUbDcμ, ρaUbDcy, and 
ρaUbDcg would produce the four dimensionless variables in Equation 2.10, 
except that U2/gD appears instead of U2/gy.  It turns out that for this procedure to 
work, the constraints on the choice of the three repeating variables are that (1) 
among them they include all three dimensions M, L, T, and (2) they be 
dimensionally independent of each other, in the sense that you cannot obtain the 
dimensions of any one by multiplying together the dimensions of the other two 
after raising them to some exponents.  These constraints just ensure that you get 
solvable sets of simultaneous equations. 

 
“DIMENSIONAL ANALYSIS”  

22  Most kinds of fluid flow that are important in natural environments do 
not lend themselves to analytical solutions, even when no sediment is moved, so 
experiment and observation are a valuable way to learn something about them.  I 
have expatiated upon dimensionless variables and their use in expressing 
experimental results because this sort of analysis, usually called dimensional 
analysis, is so useful in dealing with problems of fluid flow and sediment 
movement.  Dimensional analysis is a way of getting some useful information 
about a problem when you cannot obtain an analytical solution and may not even 
know anything about the form of the solution, but you have some ideas about 
important physical effects or variables.  You will encounter many examples of its 
use in later chapters.  

23  Suppose that you are dealing with a fluid-flow problem that can be 
simplified somehow, perhaps in geometry or in time variability, to be manageable 
but still representative.  Use your experience and physical intuition to identify the 
important variables.  Form a set of dimensionless variables by which the 
observational results can be expressed.  This represents the most efficient means 
of dealing with experimental data, and it usually makes it possible to get some 
idea of the ranges in which certain physical effects are important or unimportant.  
Do not worry too much about guessing wrong about important variables; the 
example of flow past a sphere shows how you can find out and change course.  

24  The number of dimensionless variables equivalent to a given set of 
original variables is given by the Pi theorem, also called Buckingham’s theorem.  
By the Pi theorem, the number of dimensionless variables corresponding to a 
number n of original variables that describe some physical problem is equal to n -
m, where m is the number of dimensions by which the problem must be 
expressed.  If you want to go back to the original source of the proofs (the 
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theorem was not proved in the foregoing material, just demonstrated), see 
Buckingham (1914, 1915). 

 
SIGNIFICANCE OF REYNOLDS NUMBERS AND FROUDE NUMBERS  

25  Some further insight into the significance of Reynolds numbers and 
Froude numbers is afforded by showing that dimensionless variables of this form 
always arise in problems involving viscous forces and gravity forces.  But first I 
want to make sure you know what an equation of motion is.   

26  The equation of motion for some body of matter, whether solid or fluid, 
whether discrete or continuous, is just Newton’s second law written for that body.  
You write out the sum of all the forces acting on the body and set that sum equal 
to the mass times the acceleration.  The equation of motion for a continuous 
medium like a fluid comes out to be a differential equation.  Why?  Because to 
derive the equation you have to write it for some element of fluid with finite 
volume, and then watch what happens to the equation as the volume element 
shrinks to a point. 

27  Think about the balance of forces on some small element of fluid in any 
fluid-flow problem (for example, that of a sphere moving near a free surface) that 
involves fluid shear forces and also gravity forces that are not simply balanced out 
by hydrostatic pressure.  Whatever the exact nature of the problem, Newton’s 
second law must hold for this small element of fluid, so we can write for it a 
general equation of motion in words: 

 
viscous force + gravity force + any other forces  
           = rate of change of momentum     (2.11) 

 
All of the terms in this equation have the same dimensions, so we can divide all 
the terms by any one of them to obtain an equation with all terms dimensionless.  
Dividing by the term on the right, 

 
viscous force

 ROC of momentum   + 
gravity force

 ROC of momentum    

                  + 
other forces

 ROC of momentum   =  1    (2.12) 
 
28  What will be the form of the first two dimensionless terms on the left 

side of Equation 2.12, in terms of representative variables that might be involved 
in any given flow problem?  Assuming that there is some characteristic length 
variable L in the problem like a sphere size or flow depth, and some characteristic 
velocity V like the approach velocity in flow past a sphere or the mean velocity or 
surface velocity in flow in a channel, then the rate of change of momentum, which 
has dimensions of momentum divided by a characteristic time T, can be written as 
proportional to ρL3V/T.  (Remember that the mass can be expressed as density 
times volume and the volume as the cube of a length.)  And this can further be 
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written ρL2V2, because velocity has the dimensions L/T.  The viscous force is the 
product of the viscous shear stress and the area over which it acts. Area is 
proportional to the square of the characteristic length, and by Equation 1.9 the 
shear stress is proportional to the viscosity and the velocity gradient, so the 
viscous force is proportional to μ(V/L)L2, or μVL.  The first term in Equation 2.12 
is then proportional to μVL/ρL2V2, or μ/ρLV.  This is simply the inverse of a 
Reynolds number.  The Reynolds number in any fluid problem is therefore 
inversely proportional to the ratio of a viscous force and a quantity with the 
dimensions of a force, the rate of change of momentum, which is usually viewed 
as an “inertial force”.  

29  How about the second term in Equation 2.12?  The gravity force is the 
weight of the fluid element, which is proportional to ρgL3.  The second term is 
then proportional to ρgL3/ρL2V2, or gL/V2.  This is the square of the inverse of a 
Froude number.  The square of the Froude number is therefore proportional to the 
ratio of a gravity force and a rate of change of momentum or an “inertial force”. 

30  This probably strikes you as not a very rigorous exercise—and indeed it 
is not.  It is intended only to give you a general feel for the significance of 
Reynolds numbers and Froude numbers.  At the expense of lengthening this 
chapter considerably, the general differential equation of motion for flow of a 
viscous fluid could be derived and then made dimensionless by introducing the 
same characteristic length and characteristic velocity, and a reference pressure as 
well.  You would see that the Reynolds number and the Froude number then 
emerge as coefficients of the dimensionless viscous-force term and dimensionless 
gravity-force term, respectively.  This is done especially lucidly by Tritton (1988, 
Chapter 7).  The value of such an exercise is that then the magnitudes of the 
Reynolds number and Froude number tell you whether the viscous-force term or 
the gravity-force term in the equation of motion can be neglected relative to the 
mass-times-acceleration term.  This is a productive way of simplifying the 
equation of motion to gain some insight into the physics of the flow.  

31  When you are deciding which set of dimensionless variables to work 
with in problems like that of flow past a sphere, introduced above, it makes sense 
to use dimensionless variables that have their own physical significance, like 
Reynolds numbers and Froude numbers.  In later chapters, other dimensionless 
variables are introduced that represent ratios of two forces in specific problems. 

    
CONCL ION US 

32  Before you are confronted any further with the physics of flow past 
spheres, you need to be introduced to quite a bit more material on fluid flow.  The 
first part of the next chapter, Chapter 3, is devoted to this material, before more on 
the topic of flow past spheres. 
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