
CHAPTER 3 
      

FLOW  PAST  A  SPHERE  II:  STOKES’ LAW, THE 
BERNOULLI EQUATION, TURBULENCE, BOUNDARY 

LAYERS, FLOW SEPARATION 
  
 

INTRODUCTION   
1  So far we have been able to cover a lot of ground with a minimum of 

material on fluid flow.  At this point I need to present to you some more topics in 
fluid dynamics—inviscid fluid flow, the Bernoulli equation, turbulence, boundary 
layers, and flow separation—before returning to flow past spheres.  This material 
also provides much of the necessary background for discussion of many of the 
topics on sediment movement to be covered in Part II.  But first we will make a 
start on the nature of flow of a viscous fluid past a sphere. 

 
THE NAVIER-STOKES EQUATION  

2  The idea of an equation of motion for a viscous fluid was introduced in 
the Chapter 2.  It is worthwhile to pursue the nature of this equation a little further 
at this point.  Such an equation, when the forces acting in or on the fluid are those 
of viscosity, gravity, and pressure, is called the Navier–Stokes equation, after two 
of the great applied mathematicians of the nineteenth century who independently 
derived it.   

3  It does not serve our purposes to write out the Navier–Stokes equation in 
full detail.  Suffice it to say that it is a vector partial differential equation. (By 
that I mean that the force and acceleration terms are vectors, not scalars, and the 
various terms involve partial derivatives, which are easy to understand if you 
already know about differentiation.)  The single vector equation can just as well 
be written as three scalar equations, one for each of the three coordinate 
directions; this just corresponds to the fact that a force, like any vector, can be 
described by its scalar components in the three coordinate directions.   

4  The Navier–Stokes equation is notoriously difficult to solve in a given 
flow problem to obtain spatial distributions of velocities and pressures and shear 
stresses.  Basically the reasons are that the acceleration term is nonlinear, 
meaning that it involves products of partial derivatives, and the viscous-force 
term contains second derivatives, that is, derivatives of derivatives.  Only in 
certain special situations, in which one or both of these terms can be simplified or 
neglected, can the Navier–Stokes equation be solved analytically.  But numerical 
solutions of the full Navier–Stokes equation are feasible for a much wider range 
of flow problems, now that computers are so powerful. 
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FLOW PAST A SPHERE AT LOW  REYNOLDS NUMBERS   
5  We will make a start on the flow patterns and fluid forces associated with 

flow of a viscous fluid past a sphere by restricting consideration to low Reynolds 
numbers ρUD/μ (where, as before, U is the uniform approach velocity and D is 
the diameter of the sphere). 

 

 
 

Figure 3-1.  Steady flow of a viscous fluid at very low Reynolds numbers 
(“creeping flow”) past a sphere.  The flow lines are shown in a planar section 
parallel to the flow direction and passing through the center of the sphere. 

 

 

6  At very low Reynolds numbers, Re << 1, the flow lines relative to the 
sphere are about as shown in Figure 3-1.  The first thing to note is that for these 
very small Reynolds numbers the flow pattern is symmetrical front to back.  The 
flow lines are straight and uniform in the free stream far in front of the sphere, but 
they are deflected as they pass around the sphere.  For a large distance away from 
the sphere the flow lines become somewhat more widely spaced, indicating that 
the fluid velocity is less than the free-stream velocity.  Does that do damage to 
your intuition?  One might have guessed that the flow lines would be more 
crowded together around the midsection of the sphere, reflecting a greater 
velocity instead—and as will be shown later in this chapter, that is indeed the case 
at much higher Reynolds numbers.  (See a later section for more on what I have 
casually called flow lines here.)  For very low Reynolds numbers, however, the 
effect of “crowding”, which acts to increase the velocity, is more than offset by 
the effect of viscous retardation, which acts to decrease the velocity. 

7  The velocity of the fluid is everywhere zero at the sphere surface 
(remember the no-slip condition) and increases only slowly away from the sphere, 
even in the vicinity of the midsection:  at low Reynolds numbers, the retarding 
effect of the sphere is felt for great distances out into the fluid.  You will see later 
in this chapter that the zone of retardation shrinks greatly as the Reynolds number 
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increases, and the “crowding” effect causes the velocity around the midsection of 
the sphere to be greater than the free-stream velocity except very near the surface 
of the sphere; more on that later. 

 

 
 

Figure 3-2.  Coordinates for description of the theoretical distribution of velocity 
in flow past a sphere at very low Reynolds numbers (creeping flow). 

 

 

8  If you would like to see for yourself how the velocity varies in the 
vicinity of the sphere, Equations 3.1 give the theoretical distribution of velocity v, 
as a function of distance r from the center of the sphere and the angle θ measured 
around the sphere from 0° at the front point to 180° at the rear point (Figure 3-2): 
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This result was obtained by Stokes (1851) by specializing the Navier–Stokes 
equations for an approaching flow that is so slow that accelerations of the fluid as 
it passes around the sphere can be ignored, resulting in an equation that can be 
solved analytically.  I said in Chapter 2 that fluid density ρ is needed as a variable 
to describe the drag force on a sphere because accelerations are produced in the 
fluid as the sphere moves through it.  If these accelerations are small enough, 
however, it is reasonable to expect that their effect on the flow and forces can be 
neglected.  Flows of this kind are picturesquely called creeping flows.  The 
reason, to which I alluded in the previous section, is that in the Navier–Stokes 
equations the term for rate of change of momentum becomes small faster than the 
two remaining terms, for viscous forces and pressure forces, as the Reynolds 
number decreases. 

9  You can see from Equations 3.1 that as r → ∞ the velocity approaches its 
free-stream magnitude and direction.  The 1/r dependence in the second terms in 

 37



the parentheses on the right-hand sides of Equations 3.1 reflects the appreciable 
distance away from the sphere the effects of viscous retardation are felt.  A simple 
computation using Equations 3.1 shows that, at a distance equal to the sphere 
diameter from the surface of the sphere at the midsection in the direction normal 
to the free-stream flow, the velocity is still only 50% of the free-stream value. 

10  At every point on the surface of the sphere there is a definite value of 
fluid pressure (normal force per unit area) and of viscous shear stress (tangential 
force per unit area).  These values also come from Stokes’ solution for creeping 
flow around a sphere.  For the shear stress, you could use Equations 3.1 to find 
the velocity gradient at the sphere surface and then use Equation 1.9 to find the 
shear stress.  For the pressure, Stokes found a separate equation, 

 

p − p0 =
3
2

μUR
r2 cosθ       (3.2) 

 
where po is the free-stream pressure.  Figures 3-3 and 3-4 give an idea of the 
distribution of these forces.  It is easy to understand why the viscous shear stress 
should be greatest around the midsection and least on the front and back surface 
of the sphere, because that is where the velocity near the surface of the sphere is 
greatest.  The distribution of pressure, high in the front and low in the back, also 
makes intuitive sense.  It is interesting, though, that there is a large front-to-back 
difference in pressure despite the nearly perfect front-to-back symmetry of the 
flow. 

11  You can imagine adding up both pressures and viscous shear stresses over 
the entire surface, remembering that both magnitude and direction must be taken 
into account, to obtain a resultant pressure force and a resultant viscous force on 
the sphere.  Because of the symmetry of the flow, both of these resultant forces 
are directed straight downstream.  You can then add them together to obtain a 
grand resultant, the total drag force FD.  Using the solutions for velocity and 
pressure given above (Equations 3.1 and 3.2), Stokes obtained the result  

 
 
FD = 6πμUR       (3.3) 
 

for the total drag force on the sphere. Density does not appear in Stokes’ law 
because it enters the equation of motion only the mass-time-acceleration term, 
which was neglected.  For Reynolds numbers less than about one, the result 
expressed by Equation 3.3, called Stokes’ law, is in nearly perfect agreement with 
experiment.  It turns out that in the Stokes range, for Re << 1, exactly one-third of 
FD is due to the pressure force and two-thirds is due to the viscous force.   
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Figure 3-3.  Distribution of shear stress on the surface of a sphere in a flow of 
viscous fluid at very low Reynolds numbers (creeping flow).  The distribution is 
shown in a planar section parallel to the flow direction and passing through the 
center of the sphere. 
 

 
Figure 3-4.  Distribution of pressure on the surface of a sphere in a flow of 
viscous fluid at very low Reynolds number (creeping flow).  The distribution is 
shown in a planar section parallel to the flow direction and passing through the 
center of the sphere. 
 

 

 

 39



12  Now pretend that you do not know anything about Stokes’ law for the 
drag on a sphere at very low Reynolds numbers.  If you reason, as discussed 
above, that ρ can safely be omitted from the list of variables that influence the 
drag force, then you are left with four variables:  FD, U, D, and μ.  The functional 
relationship among these four variables is necessarily 

 
f (FD, U, D, μ) = const       (3.4) 
 

You can form only one dimensionless variable out of the four variables FD, U, D, 
and μ, namely FD/μUD.  So, in dimensionless form, the functional relationship in 
Equation 3.4 becomes  

 
FD

μUD   =  const              (3.5) 
 

You can think of Equation 3.5 as a special case of Equation 2.2.  If you massage 
Stokes’ law (Equation 3.3) just a bit, by dividing both sides of the equation by 
μUR to make the equation dimensionless, and using the diameter D instead of the 
radius R, you obtain 

 
FD

μUD   =  3π           (3.6) 
 

Compare this with Equation 3.5 above.  You see that dimensional analysis alone, 
without recourse to attempting exact solutions, provides the equation to within the 
proportionality constant.  Stokes’ theory provides the value of the constant. 

13  The flow pattern around the sphere and the fluid forces that act on the 
sphere gradually become different as the Reynolds number is increased.  The 
progressive changes in flow pattern with increasing Reynolds number are 
discussed in more detail later in this chapter, after quite a bit of necessary further 
background in the fundamentals of fluid dynamics. 

 
INVISCID FLOW  

14  Over the past hundred and fifty years a vast body of mathematical 
analysis has been devoted to a kind of fluid that exists only in the imagination:  an 
inviscid fluid, in which no viscous forces act.  This fiction (in reality there is no 
such thing as an inviscid fluid) allows a level of mathematical progress not 
possible for viscous flows, because the viscous-force term in the Navier–Stokes 
equation disappears, and the equation becomes more tractable.  The major 
outlines of mathematical analysis of the resulting simplified equation, which is 
mostly beyond the scope of these notes, were well worked out by late in the 
1800s.  Since then, fluid dynamicists have been extending the results and 
applying or specializing them to problems of interest in a great many fields.  

 40



 

 
 

Figure 3-5.  Flow of an inviscid fluid past a sphere.  The flow lines are shown in a 
planar section parallel to the flow direction and passing through the center of the 
sphere. 

 

 

 
Figure 3-6.  Plot of fluid velocity at the surface of a sphere that is held fixed in 
steady inviscid flow.  The velocity, nondimensionalized by dividing by the 
stagnation velocity, is plotted as a function of the angle θ between the center of 
the sphere and points along the intersection of the sphere surface with a plane 
parallel to the flow direction and passing through the center of the sphere.  The 
angle θ varies from zero at the front stagnation point of the sphere to 180° at the 
rear stagnation point. 
 

 
15  The pattern of inviscid flow around a sphere, obtained as noted above 

by solving the equation of motion for inviscid flow, is shown in Figure 3-5.  The 
arrangement of flow lines differs significantly from that in creeping viscous flow 
around the sphere (Figure 3-1):  the symmetry is qualitatively the same, but, in 
contrast to creeping flow, the flow lines become more closely spaced around the 
midsection, reflecting acceleration and then deceleration of the flow as it passes 
around the sphere.  Figure 3-6 is a plot of fluid velocity along the particular flow 
line that meets the sphere at its front point, passes back along the surface of the 
sphere, and leaves the sphere again at the rear point.  The velocity varies 
symmetrically with respect to the midsection of the sphere:  it falls to zero at the 
front point, accelerates to a maximum at the midsection, falls to zero again at the 
rear point, and then attains its original value again downstream.  The front and 
rear points are called stagnation points, because the fluid velocity is zero there.  
Note that elsewhere the velocity is not zero on the surface of the sphere, as it is in 
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viscous flow.  Do not let this unrealistic finite velocity on the surface of the 
sphere bother you; it is a consequence of the unrealistic assumption that viscous 
effects are absent, so that the no-slip condition is not applicable.  

 

 
Figure 3-7.  Plot of fluid pressure at the surface of a sphere that is held fixed in 
steady inviscid flow.  The pressure relative to the stagnation pressure, 
nondimensionalized by dividing by (1/2)ρU2, where U is the free-stream velocity, 
is plotted using the same coordinates as in Figure 3-6. 

 

 

16  Figure 3-7 shows the distribution of fluid pressure around the surface of 
a sphere moving relative to an inviscid fluid.  As with velocity, pressure is 
distributed symmetrically with respect to the midsection, and its variation is just 
the inverse of that of the velocity:  relative to the uniform pressure far away from 
the sphere, it is greatest at the stagnation points and least at the midsection.  One 
seemingly ridiculous consequence of this symmetrical distribution is that the flow 
exerts no net pressure force on the sphere, and therefore, because there are no 
viscous forces either, it exerts no resultant force on the sphere at all!  This is in 
striking contrast to the result noted above for creeping viscous flow past a sphere 
(Figure 3-3), in which the distribution of pressure on the surface of the sphere 
shows a strong front-to-back asymmetry; it is this uneven distribution of pressure, 
together with the existence of viscous shear forces on the boundary, that gives rise 
to the drag force on a sphere in viscous flow. 

17  So the distributions of velocity and pressure in inviscid flow around a 
sphere, and therefore of the fluid forces on the sphere, are grossly different from 
the case of flow of viscous fluid around the sphere.  Then what is the value of the 
inviscid approach?  You will see in the section on flow separation later on that at 
higher real-fluid velocities the boundary layer in which viscous effects are 
concentrated next to the surface of the sphere is thin, and outside this thin layer 
the flow patterns and the distributions of both velocity and pressure are 
approximately as given by the inviscid theory.  Moreover, the boundary layer is 
so thin for high flow velocities that the pressure on the surface of the sphere is 
approximately the same as that given by the inviscid solution just outside the 
boundary layer.  And because at these high velocities the pressure forces are the 
main determinant of the total drag force, the inviscid approach is useful in dealing 
with forces on the sphere after all.  Behind the sphere the flow patterns given by 
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inviscid theory are grossly different from the real pattern at high Reynolds 
numbers, but you will see that one of the advantages of the inviscid assumption is 
that it aids in a rational explanation for the existence of this great difference.  

18  In many kinds of flows around well streamlined bodies like airplane 
wings, agreement between the real viscous case and the ideal inviscid case is 
much better than for flow around blunt or bluff bodies like spheres.  In flow of air 
around an airplane wing, viscous forces are important only in a very thin layer 
immediately adjacent to the wing, and outside that layer the pressure and velocity 
are almost exactly as given by inviscid theory (Figure 3-8).  It is these inviscid 
solutions that allow prediction of the lift on the airplane wing:  although drag on 
the wing is governed largely by viscous effects within the boundary layer, lift is 
largely dependent upon the inviscid distribution of pressure that holds just outside 
the boundary layer.  To some extent this is true also for flow around blunt objects 
resting on a planar surface, like sand grains on a sand bed under moving air or 
water. 

 

 

  
Figure 3-8.  Flow of a real fluid past an airfoil, showing an overall flow pattern 
almost identical to that of an inviscid flow except very near the surface of the 
airfoil, where a thin boundary layer of retarded fluid is developed.  Note that the 
velocity goes to zero at the surface of the airfoil. 
 

 
 

THE BERNOULLI EQUATION   
19  In the example of inviscid flow past a sphere described in the preceding 

section, the pressure is high at points where the velocity is low, and vice versa.  It 
is not difficult to derive an equation, called the Bernoulli equation, that accounts 
for this relationship.  Because this will be useful later on, I will show you here 
how it comes about.  

20  First I have to be more specific about what I have casually been calling 
flow lines.  Fluid velocity is a vector quantity, and, because the fluid behaves as a 
continuum, a velocity vector can be associated with every point in the flow.  
(Mathematically, this is described as a vector field.)  Continuous and smooth 
curves that can be drawn to be everywhere tangent to the velocity vectors 
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throughout the vector field are called streamlines (Figure 3-9).  One and only one 
streamline passes through each point in the flow, and at any given time there is 
only one such set of curves in the flow.  There obviously is an infinity of 
streamlines passing through any region of flow, no matter how small; usually only 
a few representative streamlines are shown in sketches and diagrams.  An 
important property of streamlines follows directly from their definition:  the flow 
can never cross streamlines. 

 

 
 

Figure 3-9.  Streamlines. 
 

 
21  If the flow is steady, the streamline pattern does not change with time; if 

the streamline pattern changes with time, the flow is unsteady.  But note that the 
converse of each of these statements is not necessarily true, because an unsteady 
flow can exhibit an unchanging pattern of streamlines as velocities everywhere 
increase or decrease with time. 

22  There are two other kinds of flow lines, with which you should not 
confuse streamlines (Figure 3-10):  pathlines, which are the trajectories traced out 
by individual tiny marker particles emitted from some point within the flow that is 
fixed relative to the stationary boundaries of the flow, and streaklines, which are 
the streaks formed by a whole stream of tiny marker particles being emitted 
continuously from some point within the flow that is fixed relative to the 
stationary boundaries of the flow.  In steady flow, streamlines and pathlines and 
streaklines are all the same; in unsteady flow, they are generally all different. 

23  You also can imagine a tube-like surface formed by streamlines, called 
a stream tube, passing through some region (Figure 3-11).  This surface or set of 
streamlines can be viewed as functioning as if it were a real tube or conduit, in 
that there is flow through the tube but there is no flow either inward or outward 
across its surface. 
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Figure 3-10.  Streaklines and pathlines. 

 

 

 
 

Figure 3-11.  A streamtube. 
 

 

24  Consider a short segment of one such tiny stream tube in a flow of 
incompressible fluid (Figure 3-12).  Write the equation of motion (Newton’s 
second law) for the fluid contained at some instant in this stream-tube segment.  
The cross-sectional area of the tube is ΔA, and the length of the segment is Δs.  If 
the pressure at cross section 1, at the left-hand end of the segment, is p, then the 
force exerted on this end of the segment is pΔA.  It is not important that the area 
of the cross section might be slightly different at the two ends (if the flow is 
expanding or contracting), or that p might vary slightly over the cross section, 
because you can make the cross-sectional area of the stream tube as small as you 
please.  What is the force on the other end of the tube?  The pressure at cross 
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section 2 is different from that at cross section 1 by (∂p/∂s)Δs, the rate of change 
of pressure in the flow direction times the distance between the two cross 
sections, so the force on the right-hand end of the tube is  

 

⎝⎜
⎛

⎠⎟
⎞p +

∂p
∂sΔs   ΔA         (3.7) 

 
 

 
 

Figure 3-12.  Definition sketch for derivation of the Bernoulli equation for 
incompressible inviscid flow. 

 

 
The net force on the stream tube in the flow direction is then  

 

pΔA - (p +
∂p
∂s Δs) ΔA = - 

∂p
∂s ΔsΔA          (3.8) 

 
The pressure on the lateral surface of the tube is of no concern, because the 
pressure force on it acts normal to the flow direction. 

25  Newton’s second law, F = d(mv)/dt, for the fluid in the segment of the 
stream tube, where v is the velocity of the fluid at any point (in this section v is 
used not as the component of velocity in the y direction but as the component of 
velocity tangent to the streamline at a given point), is then 

 

-
∂p
∂s ΔsΔA = 

d
dt  [v(ρΔsΔA)]       (3.9) 

 
 Simplifying Equation 3.9 and making use of the fact that ρ is constant and so can 
be moved outside the derivative, 
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-
∂p
∂s  = ρ

dv
dt            (3.10) 

 
The derivative on the right side of Equation 3.10 can be put into more convenient 
form by use of the chain rule and a simple “undifferentiation” of one of the 
resulting terms:  

 

- 
∂p
∂s  = ρ 

dv
dt   

        = ρ [
∂v
∂t  

dt
dt  + 

∂v
∂s 

ds
dt ] 

        = ρ [
∂v
∂t   + v 

∂v
∂s ] 

        = ρ [
∂v
∂t   + 

1
2 
∂(v2)
∂s  ]      (3.11) 

 
Equation 3.11 is strictly true only for the single streamline to which the stream 
tube collapses as we let ΔA go to 0, because only then need we not worry about 
possible variation of either p or v over the cross sections.  Assuming further that 
the flow is steady, ∂v/∂t = 0, and Equation 3.11 becomes 

 

- 
∂p
∂s  = 

ρ
2 
∂(v2)
∂s            (3.12) 

 
26  It is easy to integrate Equation (3.12) between two points 1 and 2 on the 

streamline (remember that this equation holds for any streamline in the flow):  
 

-
⌡⎮
⌠

1

2
∂p
∂s ds  = 

ρ
2⌡

⎮
⌠

1

2
∂(v2)
∂s  ds     

p2 - p1 = - 
ρ
2 (v22 - v12)          (3.13) 

 
or, viewed in another way,  

 

p + 
ρv2

2   = const         (3.14) 
 

You can see from Equation 3.13 that if the flow is steady and incompressible 
there is an inverse relationship between fluid pressure and fluid velocity along 
any streamline.  Equation 3.13 or Equation 3.14 is called the Bernoulli equation.  
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Remember that it holds only along individual streamlines, not through the entire 
flow.  In other words, the constant in the Equation 3.14 is generally different for 
each streamline in the flow.  And it holds only for inviscid flow, because if the 
fluid is viscous there are shearing forces across the lateral surfaces of stream 
tubes, and Newton’s second law cannot be written and manipulated so simply.  
But often in flow of a real fluid the viscous forces are small enough outside the 
boundary layer that the Bernoulli equation is a good approximation.  

27  Note that the right-hand side of Equation 3.13 is the negative of the 
increase in kinetic energy per unit volume of fluid between point 1 and point 2.  
The Bernoulli equation is just a statement of the work–energy theorem, whereby 
the work done by a force acting on a body is equal to the change in kinetic energy 
of the body.  In this case, fluid pressure is the only force acting on the fluid.  

28  In discussing inviscid flow around a sphere I called the front and rear 
points of the sphere the stagnation points, because velocities relative to the sphere 
are zero there.  Using the Bernoulli equation it is easy to find the corresponding 
stagnation pressures.  Taking the free-stream values of pressure and velocity to 
be po and vo, writing Equation 3.13 in the form 

 

p - po = - 
ρ
2 (v2 - vo2)          (3.15)  

 
and substituting v = 0 at the stagnation points, the stagnation pressures (the same 
for front and rear points) are 

 

p = po + 
ρvo2

2           (3.16) 

 
TURBULENCE   

Introduction  
29  Most of the fluid flows of interest in science, technology, and everyday 

life are turbulent flows—although there are many important exceptions to that 
generalization, like the flow of groundwater in the porous subsurface, or the flow 
of blood in capillaries, or the flow of lubricating fluid in thin clearances between 
moving parts of a machine, or the flow of that thin, slow-moving sheet of water 
you see on the paved surface of the shopping-mall parking lot after a rain.  
Because of the range and complexity of problems in turbulent flow, the approach 
here will necessarily continue to be selective.  The introductory material on the 
description and origin of turbulence in this section is background for the 
important topic of turbulent flow in boundary layers in the following section and 
in Chapter 4.  The emphasis in all this material on turbulence is on the most 
important physical effects.  Mathematics will be held to a minimum, although 
some is unavoidable in the derivation of useful results on flow resistance and 
velocity profiles in Chapter 4. 
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What Is Turbulence?  

30  It is not easy to devise a satisfactory definition of turbulence.  
Turbulence might be loosely defined as an irregular or random or statistical 
component of motion that under certain conditions becomes superimposed on the 
mean or overall motion of a fluid when that fluid flows past a solid surface or past 
an adjacent stream of the same fluid with different velocity.  This definition does 
not convey very well what turbulence is really like; it is much easier to describe 
turbulence than to define it. 

 
Describing Turbulence   

31  My goal in this section is to present to you as clear a picture as possible 
of what turbulence is like.  Suppose that you were in possession of a magical 
instrument that allowed you to make an exact and continuous measurement of the 
fluid velocity at any point in a turbulent flow as a function of time.  I am calling 
the instrument magical because all of the many available methods of measuring 
fluid velocity at a point, some of them fairly satisfactory, inevitably suffer to 
some extent from one or both of two drawbacks:  (1) the presence of the 
instrument distorts or alters the flow one is trying to measure; (2) the effective 
measurement volume is not small enough to be regarded as a “point”. 

 

 
 

Figure 3-13.  Typical record of streamwise instantaneous flow velocity measured 
at a point in a turbulent channel flow. 

 

 

32  What would your record of velocities look like?  Figure 3-13 is an 
example of a record, for the component u of velocity in the downstream direction.  
The outstanding characteristic of the velocity is its uncertainty:  there is no way of 
predicting at a given time what the velocity at some future time will be.  But note 
that there is a readily discernible (although not precisely definable) range into 
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which most of the velocity fluctuations fall, and the same can be said about the 
time scales of the fluctuations.  

33  Turbulence measurements present a rich field for statistical treatment.  
First of all, a mean velocity u  can be defined from the record of u by use of an 
averaging time interval that is very long with respect to the time scale of the 
fluctuations but not so long that the overall level of the velocity drifts upward or 
downward during the averaging time.  A fluctuating velocity u' can then be 
defined as the difference between the instantaneous velocity u and the mean 
velocity u :  

 

u' = u - u            (3.17) 
 

where the overbar denotes a time average.  The time-average value of u' must be 
zero (by definition!).  Now look at the component of velocity in any direction 
normal to the mean flow direction.  You would see a record similar to that shown 
in Figure 3-13, except that the average value would always have to be zero; the 
normal-to-boundary velocity is usually called v, and the cross-stream velocity 
parallel to the boundary and normal to flow) is usually called w.  Equations just 
like Equation 3.17 can be written for the components v and w:  

 

v' = v - v  = v 

w' = w - w  = w          (3.18) 
 
34  A good measure of the intensity of the turbulence is the root-mean-

square value of the fluctuating components of velocity:  
 

rms(u')  = (u'2)1/2 

rms(v')  = (v'2)1/2 

rms(w') = (w'2)1/2         (3.19) 
 

These are formed by taking the square root of the time average of the squares of 
the fluctuating velocities; for those who are familiar with statistical terms, the rms 
values are simply standard deviations of instantaneous velocities.  They are 
always positive quantities, and their magnitudes are a measure of the strength or 
intensity of the turbulence, or the spread of instantaneous velocities around the 
mean.  Turbulence intensities are typically something like five to ten percent of 
the mean velocity u  (that is, again in the parlance of statistics, the coefficient of 
variation of velocity is 5–10%).  
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Figure 3-14.  Typical trajectory of a small fluid element or neutrally buoyant 
marker particle in a turbulent channel flow. 

 

 

35  Statistical analysis of turbulence can be carried much further than this.  
But now suppose that you measured velocity in a different way, by following the 
trajectories of fluid “points” or markers as they travel with the flow and 
measuring the velocity components as a function of time (Figure 3-14).  It is 
straightforward, though laborious, to do this sort of thing by photographing tiny 
neutrally buoyant marker particles that represent the motion of the fluid well and 
then measuring their travel and computing velocities.  Velocities measured in this 
way, called Lagrangian velocities, are related to those measured at a fixed point, 
called Eulerian velocities, and the records would look generally similar.  The 
trajectories themselves would be three-dimensionally sinuous and highly 
irregular, as shown schematically in Figure 3-14, although angles between 
tangents to trajectories and the mean flow direction are usually not very large, 
because u' is usually small relative to u .   

36  You can also imagine releasing fluid markers at some fixed point in the 
flow and watching a succession of trajectories traced out at different times (Figure 
3-15).  Each trajectory would be different in detail, but they would show similar 
features.  

37  One thing you can do to learn something about the spatial scale of the 
fluctuations revealed by velocity records like the one in Figure 3-13 is to think 
about the distance over which the velocity becomes “different” or uncorrelated 
with distance away from a given point (Figure 3-16).  Suppose that you measured 
the velocity component u simultaneously at two points 1 and 2 a distance x apart 
in the flow and computed the correlation coefficient by forming products of a 
large number of pairs of velocities, each measured at the same time, taking the 
average of all the products, and then normalizing by dividing by the rms value.  If 
the two points are close together compared to the characteristic spatial scale of the 
turbulence, the velocities at the two points are nearly the same, and the coefficient 
is nearly one.  But if the points are far apart the velocities are uncorrelated (that 
is, they have no tendency to be similar), and the coefficient is zero or nearly so.  
The distance over which the coefficient falls to its minimum value, a bit less than 
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one, before rising again to zero is roughly representative of the spatial scale of the 
turbulent velocity fluctuations.  The gentle minimum is an indication that the 
distance out from the original point corresponds to adjacent eddies, which tend to 
have an opposing velocity, hence the minimum.  A similar correlation coefficient 
can be computed for Lagrangian velocities, and correlation coefficients can also 
be based on time rather than on space.  
 

 
 

Figure 3-15.  A series of trajectories of small, neutrally buoyant markers in a 
turbulent channel flow, all released from the same point. 

 

 

 
 
Figure 3-16.  Correlation coefficient R for fluid velocity measured at two points, 1 
and 2, separated by a streamwise (i.e., alongstream) distance x. 
 

 

38  One of the very best ways to get a qualitative idea of the physical nature 
of turbulent motions is to put some very fine flaky reflective material into 
suspension in a well illuminated flow.  The flakes tend to be brought into 
parallelism with local shearing planes, and variations in reflected light from place 
to place in the flow give a fairly good picture of the turbulence. Although it is 
easier to appreciate than to describe the pattern that results, the general picture is 
one of intergrading swirls of fluid, with highly irregular shapes and with a very 

 52



wide range of sizes, that are in a constant state of development and decay. These 
swirls are called turbulent eddies.  Even though they are not sharply delineated, 
they have a real physical existence.   

39  The swirly nature of the eddies is most readily perceived when the eye 
attempts to follow points moving along with the flow; if instead the eye attempts 
to fix upon a point in the flow that is stationary with respect to the boundaries, 
fluid elements (if there are some small marker particles contained in the fluid to 
reveal them) are seen to pass by with only slightly varying velocities and 
directions, in accordance with the Eulerian description of turbulent velocity at a 
point.  

40  Each eddy has a certain sense and intensity of rotation that tends to 
distinguish it, at least momentarily, from surrounding fluid. The property of solid-
body-like rotation of fluid at a given point in the flow is termed vorticity.  Think 
in terms of the rotation of a small element of fluid as the volume of the element 
shrinks toward zero around the point.  The vorticity varies smoothly in both 
magnitude and orientation from point to point.  The eddy structure of the 
turbulence can be described by how the vorticity varies throughout the flow; the 
vorticity in an eddy varies from point to point, but it tends to be more nearly the 
same there than in neighboring eddies. 

  
Laminar and Turbulent Flow  

41  At first thought it seems natural that fluids would show a smooth and 
regular pattern of movement, without all the irregularity of turbulence.  Such 
regular flows are called laminar flows.  You will see over and over again in these 
notes that flows in a given setting or system are laminar under some conditions 
and turbulent under other conditions.  Now that you have some idea of the 
kinematics of turbulent flow, you might consider what it is that governs whether a 
given flow is laminar or turbulent in the first place, and what the transition from 
laminar to turbulent flow is like.  Osborne Reynolds did the pioneering work on 
these questions in the 1880s in an experimental study of flow through tubes with 
circular cross section (Reynolds, 1883).   

42  Think first about the variables that must be important in steady flow 
through a straight circular tube (Figure 3-17).  Density ρ must be taken into 
account, because of the possibility of turbulent flow in the tube and therefore 
local fluid accelerations.  Viscosity μ must be taken into account because it 
affects the shearing forces within the fluid and at the wall.  A variable that 
describes the speed of movement of the fluid is important, because this governs 
both fluid inertia and rates of shear.  A good variable of this kind is the mean 
velocity of flow U in  
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Figure 3-17.  Variables associated with steady flow through a circular tube. 
 

 
 
the tube; this can be found either by averaging the local fluid velocity over the 
cross section of the tube or by dividing the discharge (the volume rate of flow) by 
the cross-sectional area of the tube.  The diameter D of the tube is important 
because it affects both the shear rate and the scale of the turbulence.  Gravity need 
not be considered explicitly in this kind of flow because no deformable free 
surface is involved.  By dimensional analysis, as discussed in Chapter 1, the four 
variables U, D, ρ, and μ can be combined into a single dimensionless variable 
ρUD/μ on which all of the characteristics of the flow, including the transition 
from laminar to turbulent flow, depend.  Reynolds first deduced the importance of 
this variable, now called the Reynolds number, by considering the dimensional 
structure of the equation of motion in the way I alluded to briefly at the end of 
Chapter 2.  

43  Reynolds made two kinds of experiments.  The first, to study the 
development of turbulent flow from an originally laminar flow, was made in an 
apparatus like that shown in Figure 3-18:  a long tube leading from a reservoir of 
still water by way of a trumpet-shaped entrance section, through which a flow 
with varying mean velocity could be passed with a minimum of disturbance.  
Three different tube diameters (1/4", 1/2", and 1"; 0.64, 1.27, and 2.54 cm) and 
water of two different temperatures, and therefore of two different viscosities, 
were used.  For each combination of D and μ, U was gradually increased until the 
originally laminar flow became turbulent.  The transition was observed with the 
aid of a streak of colored water introduced at the entrance of the tube. 

 
When the velocities were sufficiently low, the streak of color extended 
in a beautiful straight line through the tube [Figure 3-19A]....  As the 
velocity was increased by small stages, at some point in the tube, always 
at a considerable distance from the trumpet or entrance, the color band 
would all at once mix up the surrounding water and fill the rest of the 
tube with a mass of colored water [Figure 3-19B]....  On viewing the 
tube by the light of an electric spark, the mass of water resolved itself 
into a mass of more or less distinct curls, showing eddies [Figure 3-19C] 

 
 (Reynolds, 1883, p. 942).  Reynolds found that for each combination of D and U 
the point of transition was characterized by almost exactly the same value of Re, 
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around 12,000.  Subsequent experiments have since confirmed this over a much 
wider range of U, D, ρ, and μ.  

 

 
 

Figure 3-18.  Apparatus (schematic) used by Osborne Reynolds in his study of the 
transition from laminar to turbulent flow in a circular tube. 

 

 
Figure 3-19.  The results of Reynolds’ experiments on the transition from laminar 
to turbulent flow in a circular tube. 

 

 

44  Reynolds suspected that, because the transition from laminar to 
turbulent flow was so abrupt and the resulting turbulence was so well developed, 
the laminar flow became potentially unstable to large disturbances at a much 
lower value of Re than he found for the transition when he minimized external 
disturbances, and in fact he observed that the transition took place at much lower 
values of Re if there was residual turbulence in the supply tank or if the apparatus 
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was disturbed in any way.  Similar experiments made with even greater care in 
eliminating such disturbances have since shown that laminar flow can be 
maintained to much higher values of Re, up to about 40,000, than in Reynolds’ 
original experiments.  

45  To circumvent the persistence of laminar flow into the range of Re for 
which it is unstable, Reynolds made a separate set of experiments to study the 
transition of originally turbulent flow to laminar flow as the mean velocity in the 
tube was gradually decreased.  To do this he passed turbulent flow through a very 
long metal pipe and gradually decreased the mean velocity until at some point 
along the pipe the flow became laminar.  The occurrence of the transition was 
detected by measuring the drop in fluid pressure between two stations about two 
meters apart near the downstream end of the pipe.  (It had been known long 
before Reynolds’ work—and you yourselves will soon be seeing why—that in 
laminar flow through a horizontal pipe the rate at which fluid pressure drops 
along the pipe is directly proportional to the mean velocity, whereas in turbulent 
flow it is approximately proportional to the square of the mean velocity.  Thus, 
although Reynolds could not see the transition he had a sensitive means of 
detecting its occurrence.)  Again many different combinations of D and μ were 
used, and in every case the transition from turbulent to laminar flow occurred at 
values of Re close to 2000.  This is the value for which laminar flow can be said 
to be unconditionally stable, in the sense that no matter how great a disturbance is 
introduced, the flow always reverts to being laminar.  

 
Origin of Turbulence  

46  Mathematical theory for the origin of turbulence is intricate, and only 
partly successful in accounting for the transition to turbulent flow at a certain 
critical Reynolds number.  One of the most successful approaches involves 
analysis of the stability of a laminar flow against very small-amplitude 
disturbances.  The mathematical technique involves introducing a small wavelike 
disturbance of a certain frequency into the equation of motion for the flow and 
then seeing whether the disturbance grows in amplitude or is damped.  The 
assumption is that if the disturbance tends to grow it will eventually lead to 
development of turbulence.   

47  Although a satisfactory explanation would take us off the track at this 
point, in laminar flow there is a tendency for a wave-shaped distortion like the 
one in Figure 3-20 to be amplified with time:  applying the Bernoulli equation 
along the streamlines shows that fluid pressure is lowest where the velocity is 
greatest in the region of crowded flow lines, and highest where the velocity is 
smallest in the region of uncrowded flow lines, and the resulting unbalanced 
pressure force tends to accelerate the fluid in the direction of convexity and 
thereby accentuate the distortion.  But at the same time the viscous resistance to 
shearing tends to weaken the shearing in the high-shear part of the distortion and 
thus tends to make the flow revert to uniform shear.  It should therefore seem 
natural that the Reynolds number, which is a measure of the relative importance 
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of viscous shear forces and accelerational tendencies, should indicate whether 
disturbances like this are amplified or damped. 

 

 
 

Figure 3-20.  Amplification of a wave-shaped disturbance on an interface of 
velocity discontinuity in laminar flow (schematic).  A) Pressure forces acting to 
deform the surface.  Plus and minus signs indicate high and low pressures, 
respectively.  B) Evolution of the disturbance with time in a series of vortices. 

 

 

48  Figure 3-21 is a stability diagram for a laminar shear layer or boundary 
layer (see next section) developed next to a planar boundary.  The diagram shows 
the results of both the mathematical stability analysis described above and 
experimental observations on stability.  The experiments were made by causing a 
small metal band to vibrate next to the planar boundary at a known frequency and 
observing the resulting velocity fluctuations in the fluid.  Agreement between 
theory and experiment is good but not perfect; if the experimental results were 
completely in agreement with the calculated curve, they would all fall on it.  The 
diagram shows that there is a well-defined critical Reynolds number, Recrit, 
below which the laminar flow is always stable but above which there is a range of 
frequencies at any Reynolds number for which the disturbance is amplified, so 
that the laminar flow is potentially unstable and becomes turbulent provided that 
disturbances with frequencies in that range are present.  
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Figure 3-21.  Diagram showing stability of a laminar shear layer (boundary layer) 
developed next to a planar boundary.  The vertical axis is a dimensionless 
measure of the frequency f of the imposed small-amplitude disturbances.  The 
horizontal axis is a Reynolds number based on the thickness δ of the boundary 
layer and free-stream velocity at the outer edge of the boundary layer.  The solid 
curve is the calculated curve for neutral stability (Lin, 1955); the points represent 
experimental determinations of neutral stability (Schubauer and Skramstad, 
1947). 

 

 

 
BOUNDARY  LAYERS  

Introduction  
49  A boundary layer is the zone of flow in the immediate vicinity of a 

solid surface or boundary in which the motion of the fluid is affected by the 
frictional resistance exerted by the boundary.  The no-slip condition requires that 
the velocity of  fluid in direct contact with solid boundary be exactly the same as 
the velocity of the boundary; the boundary layer is the region of fluid next to the 
boundary across which the velocity of the fluid grades from that of the boundary 
to that of the unaffected part of the flow (often called the free stream) some 
distance away from the boundary.  

50  Probably the simplest example of a boundary layer is the one that 
develops on both surfaces of a stationary flat plate held parallel to a uniform free 
stream of fluid (Figure 3-22).  Just downstream of the leading edge of the plate 
the boundary layer is very thin, and the shearing necessitated by the transition 
from zero velocity to free-stream velocity is compressed into a thin zone of strong 
shear, so the shear stress at the surface of the plate is large (cf. Equation 1.8).  
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Farther along the plate the boundary layer is thicker, because the motion of a 
greater thickness of fluid is retarded by the frictional influence of the plate, in the 
form of shear stresses exerted from layer to layer in the fluid; the shearing is 
therefore weaker, and the shear stress at the surface of the plate is smaller. 

 

 
 

Figure 3-22.  Development of a laminar boundary layer on a flat plate at zero 
incidence (i.e., held edgewise to the flow).  A boundary layer develops on both 
sides of the plate; only one side is shown. 

 

 

51  Boundary layers develop on objects of any shape immersed in a fluid 
moving relative to the object:  flat plates as discussed above, airplane wings and 
other streamlined shapes, and blunt or bluff bodies like spheres or cylinders or 
sediment particles. Boundary layers also develop next to the external boundaries 
of a flow:  the walls of pipes and ducts, the beds and bottoms of channels, the 
ocean bottom, and the land surface under the moving atmosphere.  In every case 
the boundary layer has to start somewhere, as at the front surface or leading edge 
of a body immersed in the flow or at the upstream end of any solid boundary to 
the flow.  And in every case it grows or expands downstream, until the flow 
passes by the body (the shearing motion engendered in the boundary layer is then 
degraded by viscous forces), or until it meets another boundary layer growing 
from some other surface, or until it reaches a free surface, or until it is prevented 
from further thickening by encountering a stably density-stratified layer of the 
medium—as is commonly the case in the atmosphere and in the deep ocean. 

 
Laminar Boundary Layers and Turbulent Boundary Layers    

52  Flow in boundary layers may be either laminar or turbulent. A boundary 
layer that develops from the leading part of an object immersed in a free stream or 
at the head of a channel or conduit typically starts out as a laminar flow, but if it 
has a chance to grow for a long enough distance along the boundary it abruptly 
becomes turbulent.  In the example of a flat-plate boundary layer (Figure 3-23) 
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we can define a Reynolds number Reδ = ρUδ/μ based on free-stream velocity U 
and boundary-layer thickness δ; just as in flow in a tube, discussed in a previous 
section, past a certain critical value of Reδ the laminar boundary layer is 
potentially unstable and may become turbulent.  If there are no large turbulent 
eddies in the free stream, the laminar boundary layer may persist to very high 
Reynolds numbers; if the free stream is itself turbulent, or if the solid boundary 
surface is very rough, the boundary layer may become turbulent a very short 
distance downstream of the leading edge.  Turbulence in the form of small spots 
develops at certain points in the laminar boundary layer, spreads rapidly, and soon 
engulfs the entire boundary layer.   

 

 
 

Figure 3-23.  Transition from a laminar boundary layer to a turbulent boundary 
layer on a flat plate at zero incidence. 

 

 

53  Once the boundary layer becomes turbulent it thickens faster, because 
fluid from the free stream is incorporated into the boundary layer at its outer edge 
in much the same way that clear air is incorporated into a turbulent plume of 
smoke (Figure 3-24).  That effect is in addition to, and as important as, the effect 
of incorporation of new fluid into the boundary layer just by local frictional 
action—which is the only way a laminar boundary layer can thicken.  But the 
thickness of even a turbulent boundary layer grows fairly slowly relative to 
downstream distance; the angle between the average position of the outer edge of 
the boundary layer and the boundary itself is not very large, typically something 
like a few degrees. 

Wakes   
54  In situations where the flow passes all the way past some object of finite 

size surrounded by the flow, the boundary layer does not have a chance to 
develop beyond the vicinity of the body itself (Figure 3-25).  Downstream of the 
object the fluid that was retarded in the  
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Figure 3-24.  Sketch of processes acting to thicken a turbulent boundary layer on 
a flat plate at zero incidence. 

 

 
boundary layer is gradually reaccelerated by the free stream, until far downstream 
the velocity profile in the free stream no longer shows any evidence of the 
presence of the object upstream.  The zone of retarded and often turbulent fluid 
downstream of the object is called the wake. 

 
How Thick are Boundary Layers?  

55  One usually thinks of a boundary layer as being thin compared to the 
scale of the body on which it develops.  This is true at high Reynolds numbers, 
but it is not true at low Reynolds numbers.  I will show you here, by a fairly 
simple line of reasoning, that the boundary-layer thickness varies inversely with 
the Reynolds number. 

56  The thickness of the boundary layer is determined by the relative 
magnitude of two effects:  (1) the slowing of fluid farther and farther away from 
the solid surface by the action of fluid friction, and (2) the sweeping of that low-
momentum fluid downstream and its replacement by fluid from upstream moving 
at the free-stream velocity.  The greater the second effect compared with the first, 
the thinner the boundary layer. 
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Figure 3-25.  Development of a wake downstream of a flat plate at zero incidence. 
 

 

57  Think in terms of the downstream component of fluid momentum at 
some distance away from the solid boundary and at some distance downstream 
from the leading edge of the boundary layer.  The rate of downstream transport of 
fluid momentum (written per unit volume of fluid) at the outer edge of the 
boundary layer is U(ρU), where U is the free-stream velocity.  The slowing of 
fluid by friction is a little trickier to deal with.  Think back to Chapter 1, where I 
introduced the idea that the viscosity can be thought of as a cross-stream diffusion 
coefficient for downstream fluid momentum.  In line with that idea, within the 
boundary layer the downstream fluid momentum is all the time diffusing toward 
the boundary.  (Fluid dynamicists like to say that the boundary is a sink for 
momentum.)  So the rate of cross-stream momentum diffusion is approximately 
equal to μ(U/δ), where U/δ represents in a crude way the velocity gradient du/dy 
within the boundary layer.   

58  The rate of thickening of the boundary layer is crudely represented by 
the ratio of downstream transport of momentum, on the one hand, to the rate of 
decrease of momentum at a place on account of  the diffusion of momentum 
toward the boundary, both of these quantities having been derived in the last 
paragraph: 

 
 
 

cross-stream diffusion
downstream transport    =  

μU/δ
 ρU2  

 62



         = 
μ

ρUδ  

         = 1/Reδ     (3.20) 
 
59  Equation 3.20 shows that the rate of boundary-layer thickening varies as 

the inverse of the Reynolds number based on boundary-layer thickness.  This 
means that the boundary layer thickens more and more slowly in the downstream 
direction, so the cartoon of the flat-plate boundary layer in Figure 3-22, with the 
top of the boundary layer describing a curve that is concave toward the plate, is 
indeed qualitatively correct. 

60  Equation 3.20 also tells you that the larger the Reynolds number based 
on the mean flow and the size of the solid object on which the boundary layer is 
growing, the thinner the boundary layer is at a given point—because for given δ, 
Reδ is proportional to this Reynolds number.  (For the flat plate, this Reynolds 
number is based on the distance from the leading edge; for the sphere, it is based 
most naturally on sphere diameter.)  So the faster the free stream velocity and the 
larger the sphere (or the farther down the flat plate), and the smaller the viscosity, 
the thinner the boundary layer. 

61  Keep in mind, as a final note, that all of the foregoing is for a laminar 
boundary layer—although the second part of the conclusion, that boundary-layer 
thickness is proportional to some Reynolds number defined on the size of the 
body, is qualitatively true for a turbulent boundary layer as well. 

62  You might be wondering how thick boundary layers really are.  This is 
something you can think about the next time you are sitting in a window seat over 
the wing, several miles above the Earth.  How thick is the boundary layer at a 
distance of, say, one meter from the leading edge of the wing, when the plane is 
traveling at 500 miles an hour?  There is an exact solution for the thickness of a 
laminar boundary layer as a function of the Reynolds number Rex based on free-
stream velocity and distance from the leading edge: 

 

δ = 4.99 Rex
-1/2       (3.19) 

 
 (The derivation of Equation 3.21 is a little beyond this course; see Tritton, 1988, 
p. 127–129 if you are interested in pursuing it further.)  Assuming an air 
temperature of -50°C and an altitude of 35,000 feet, the density of the air is about 
10-3 g/cm3 and the viscosity is something like 1.5 x 10-4 poise.  Substituting the 
various values into Equation 3.21, we find that the boundary-layer thickness is a 
few hundredths of a millimeter. The boundary layer on the roof of your car at 65 
mph is much thicker, by about an order of magnitude, because the air speed is so 
much slower. 
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Some Flows Are “All Boundary Layer”  
63  An example of the boundary layer growing to fill the entire flow is an 

open-channel flow that has just emerged from a sluice-like outlet at the bottom of 
a large reservoir of water (Figure 3-26).  Right at the inlet, the entire flow could 
be considered the “free stream”.  As the flow passes down the channel, a 
boundary layer grows upward into the flow from the bottom. If the minor effect of 
friction with the atmosphere is neglected, no boundary layer develops at the upper 
surface of the flow.  Eventually the growing boundary layer reaches the surface, 
and from that point downstream the river is all boundary layer! 

 

 
 

Figure 3-26.  Downstream development of a boundary layer in an open-channel 
flow that begins at the outlet of a sluice gate. 

 

 

64  In a situation like this, boundary-layer development is typically 
complete in a downchannel distance equal to something like a few tens of flow 
depths.  Upstream, in the zone of boundary-layer growth, the boundary layer is 
nonuniform, in that it is different at each section; downstream, in the zone of fully 
established flow, the boundary layer is uniform, in that it looks the same at every 
cross section. 

 
Internal Boundary Layers  

65  Finally, there can be boundary layers within boundary layers.  Such 
boundary layers are called internal boundary layers.  Suppose that a thick 
boundary layer is developing on a broad surface in contact with a flow, or a 
boundary layer has already grown to the full lateral extent of the flow, as in a 
river.  Any solid object of restricted size immersed in that boundary layer, located 
either on the boundary, like some kind of irregularity or protuberance, or within 
the flow, like part of a submarine structure, causes the local development of 
another boundary layer (Figure 3-27). 
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Figure 3-27.  Development of an internal boundary layer on a hemispherical 
roughness element on the bed of a channel flow. 

 

 

   
FLOW  SEPARATION   

66  The overall pattern of flow at fairly high Reynolds numbers past blunt 
bodies or through sharply expanding channels or conduits is radically different 
from the pattern expected from inviscid theory, which I have said is often a good 
guide to the real flow patterns.  Figure 3-28 shows two examples of such flow 
patterns, one for a sphere and one for a duct or pipe that has a downstream 
expansion at some point.  Near the point where the solid boundary begins to 
diverge or fall away from the direction of the mean flow, the boundary layer 
separates or breaks away from the boundary.  This phenomenon is called flow 
separation. 
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Figure 3-28.  Two examples of flow separation:  A) flow around a sphere; B) flow 
through an expansion in a planar duct. 

 

 

67  In all cases the flow separates from the boundary in such a way that the 
fluid keeps moving straight ahead as the boundary surface falls away from the 
direction of flow just upstream.  The main part of the flow, outside the boundary 
layer, diverges from the solid boundary correspondingly.  If you look only at the 
regions enclosed by the dashed curves in Figure 3-28 you can appreciate that flow 
separation is dependent not so much on the overall flow geometry as on the 
change in the orientation of the boundary relative to the overall flow—a change 
that involves a curving away of the boundary from the overall flow direction.  
Separation takes place at or slightly downstream of the beginning of this curving 
away.  
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68  The region downstream of the separation point is occupied by stagnant 
fluid with about the same average velocity as the boundary itself.  In this region 
the fluid has an unsteady eddying pattern of motion, with only a weak circulation 
as shown in Figure 3-28.  As soon as the boundary layer leaves the solid boundary 
it is in contact with this slower-moving fluid across a surface of strong shear.  
This surface of shearing is unstable, and a short distance downstream of the 
separation point it becomes wavy and then breaks down to produce turbulence.  
This turbulence is then mixed or diffused both into the main flow and into the 
stagnant region, and it is eventually damped out by viscous shearing within 
eddies, but its effect extends for a great distance downstream.  The stagnant 
region of fluid inside the separation surface, together with the region of strong 
turbulence developed on the separation surface, is called a wake.  Far downstream 
from a blunt body like a sphere (Figure 3-28A) the wake turbulence is weak and 
the average fluid velocity along a profile across the mean flow is slightly less than 
the free-stream velocity.  In flow past an expansion in a duct or channel (Figure 
3-28B), the expanding zone of wake turbulence eventually impinges upon the 
boundary; downstream of this point, where the flow is said to reattach to the 
boundary, the flow near the boundary is once again in the downstream direction, 
and a new boundary layer develops until far downstream of the expansion the 
flow is once again fully established. 

 

 
Figure 3-29.  Pattern of streamlines in steady inviscid flow past a sphere. 

 

 

69  You can understand why flow separation takes place by reference to 
steady inviscid flow around a sphere (Figure 3-29). Remember that variations in 
fluid velocity can be deduced qualitatively just from variations in spacing of 
neighboring streamlines.  As a small mass of fluid approaches the sphere along a 
streamline that will take it close to the surface of the sphere, it decelerates slightly 
from its original uniform velocity and then accelerates to a maximum velocity at 
the midsection of the sphere (Figure 3-30A).  Beyond the midsection it 
experiences precisely the reverse variation in velocity:  it decelerates to minimum 
velocity and then accelerates slightly back to the free-stream velocity.  We can 
apply the Bernoulli equation (Equation 3.13 or 3.14) to find the corresponding 
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variation in fluid pressure (Figure 3-30B).  The pressure is slightly greater than 
the free-stream value at points just upstream and just downstream of the sphere 
but shows a minimum at the midsection.  It is this variation in pressure that causes 
strong accelerations and decelerations as the fluid passes around the sphere.  In 
front of the sphere the pressure decreases along the streamline (the spatial rate of 
change or gradient of pressure is said to be negative or favorable), so there is a 
net force on the fluid mass in the direction of motion, causing an acceleration.  In 
back of the sphere the pressure increases along the streamline (the pressure 
gradient is positive or adverse), so there is a net force opposing the motion, and 
the fluid mass decelerates. 

 

 
 

Figure 3-30.  Variation in A) velocity and B) pressure along a streamline passing 
close to the surface of a sphere, for steady inviscid flow past the sphere 
(schematic). 

 

 

70  In inviscid flow the pressure is the only force in the fluid. But in the real 
world of viscous fluids, a boundary layer develops next to the sphere (Figure 
3-31).  If the boundary layer is thin, the streamwise variation in fluid pressure 
given by the Bernoulli equation along streamlines just outside the boundary layer 
is approximately the same as the pressure on the boundary; the pressure outside 
the boundary layer is said to be impressed on the boundary.  If now you follow 
the motion of a fluid mass along a streamline that is close enough to the sphere to 
become involved in the boundary layer, a viscous force as well as the impressed 
pressure force acts on the fluid mass.  Because the viscous force everywhere 
opposes the motion, the fluid mass cannot ultimately regain its uniform velocity 
after passing the sphere, as in inviscid flow. The fluid cannot accelerate as much 
in front of the sphere as in the inviscid flow, and it reaches the midsection with 
lower velocity; then the adverse pressure gradient in back of the sphere, which is 
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augmented by the viscous retardation, decelerates the fluid to zero velocity and 
causes it to start to move in reverse.  This reverse flow forms a barrier to the 
continuing flow from the front of the sphere, and so the flow must break away 
from the boundary to pass over the obstructing fluid.  Because velocities are small 
along streamlines close to the boundary, this deceleration to zero velocity occurs 
only a short distance downstream of the onset of the adverse pressure gradient 
where the boundary curves away from the mean flow direction. 

 

 
 
Figure 3-31.  Flow processes leading to the onset of flow separation. 
 

 

71  Once the separated flow is established, the flow pattern looks something 
like that shown in Figure 3-32.  This figure is just a detail of the region enclosed 
by the dashed curves in Figure 3-28. 

72  You might justifiably ask why this same explanation should not hold 
just as well for slow flow around a sphere at Reynolds numbers small enough to 
be in the Stokes range.  A superficial answer would be that according to Stokes’ 
law for slow viscous flow around a sphere the distributions of pressure and shear 
stress are such that the flow passes around the sphere without reversal.  A more 
basic explanation, which is qualitatively true but may not be very helpful, is as 
follows.  As noted earlier in this chapter, flow around a sphere at low velocities is 
characterized by fluid accelerations that are everywhere so small compared to 

 69



fluid velocities that the viscous forces are everywhere closely balanced by 
pressure forces, so that there is no tendency for fluid to decelerate to a stall.  At 
these low velocities, retardation by viscous shearing in the fluid caused by the 
presence of the solid boundary extends for a great distance away from the surface 
of the sphere.  As the velocity around the sphere increases, this retarded fluid is to 
a progressively greater extent swept or advected back around the sphere, to be 
“replaced” by faster-moving fluid, thus concentrating the region of retardation 
into a relatively thin layer near the solid boundary.  The pressure distribution in 
the fluid outside this thin boundary layer becomes more and more like that 
predicted by inviscid theory.  Think in terms of a balance between spreading of 
retardation outward from the solid boundary, on the one hand, and delivery of 
faster-moving fluid from upstream, on the other hand.  As the Reynolds number 
increases, the latter effect becomes more and more important relative to the 
former.  Ultimately, flow separation develops for the reasons outlined above. 

 

 
 

Figure 3-32.  Close-up view of flow separation (schematic). 
 

 
 
FLOW  PAST  A  SPHERE  AT  HIGH  REYNOLDS  NUMBERS  
73  So far we have considered flow past a sphere only from the standpoint 

of dimensional analysis, in Chapter 2, to derive a relationship between drag 
coefficient and Reynolds number, and we have looked at flow patterns and fluid 
forces only at very low Reynolds numbers, in the Stokes range.  You are now 
equipped to deal with flow past a sphere at higher Reynolds numbers.   

74  As the Reynolds number increases, flow separation gradually develops, 
and this corresponds to a change from a regime of flow dominated by viscous 
effects, with viscous forces and pressure forces about equally important, to a 
regime of flow dominated by flow-separation effects, with pressure forces far 
larger than viscous forces.  This gradual change in the flow regime is manifested 
in the change from the descending-straight-line branch of the curve for drag 
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coefficient CD as a function of Reynolds number (see Figure 2-2) to the 
approximately horizontal part of the curve at higher Reynolds numbers.  Even 
before separation is fully developed, there are deviations of the observed drag 
coefficient from that predicted by Stokes’ law (Figure 3-33), but, after flow 
separation well established, the curve for CD shows no relationship whatsoever to 
Stokes’ law (Figure 2-2). 

75  In this section we will examine in a qualitative way the gradual but 
fundamental ways the flow pattern around the sphere changes as the Reynolds 
number increases.  These changes can be classified or subdivided into several 
stages, which could well be called flow regimes.  Flow regimes are distinctive or 
characteristic patterns of  

 

 
Figure 3-33.  Deviation of drag coefficient CD from Stokes’ law at Reynolds 
numbers between 1 and 100. 

 

 
flow, which are manifested in certain definite ranges of flow conditions and 
which are qualitatively different from other regimes that are manifested in 
neighboring ranges of flow conditions.  The flow regimes associated with flow 
around a sphere are intergradational but distinctive.  Keep in mind that they are 
characterized or described completely by the Reynolds number, and only by the 
Reynolds number:  it is not just the size of the sphere, or the velocity of flow 
around it, or the kind of fluid; it is how all of these combine to give a particular 
value of the Reynolds number.  

76 Figure 3-34 shows a cartoon series of flow patterns with increasing Re, 
and the corresponding position on the drag-coefficient curve (Figure 2-2).  
Looking ahead to the following section on settling of spheres, these figures also 
give approximate values of the diameters of quartz spheres settling in water at the 
given Reynolds numbers, and the corresponding settling velocity, in centimeters 
per second. 
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77  Figure 3-34A shows the picture for creeping flow at Re << 1, as already 
discussed.  The streamlines show a symmetrical pattern front to back.   Although 
not shown in the figure, the flow velocity increases only gradually away from the 
surface of the sphere; in other words, there is no well-defined boundary layer at 
these low Reynolds numbers.   

78  In Figure 3-34B, for Re ≈ 1, the picture is about the same as at lower 
Re, but streamlines converge more slowly back of the sphere than they diverge in 
front of the sphere.  Corresponding to this change in flow pattern, it is in about 
this range that the front-to-back pressure forces begin to increase more rapidly 
than predicted by Stokes’ Law.    

79  Flow separation can be said to begin at a Reynolds number of about 24.  
The point of separation is at first close to the rear of the sphere, and separation 
results in the formation of a ring eddy attached to the rear surface of the sphere.  
Flow within the eddy is at first quite regular and predictable (Figure 3-34C), thus 
not turbulent, but, as Re increases, the point of separation moves to the side of the 
sphere, and the ring eddy is drawn out in the downstream direction and begins to 
oscillate and become unstable (Figure 3-34D).  At Re values of several hundred, 
the ring eddy is cyclically shed from behind the sphere to drift downstream and 
decay as another forms (Figure 3-34E).  Also in this range of Re, turbulence 
begins to develop in the wake of the sphere.  At first turbulence develops mainly 
in the thin zone of strong shearing produced by flow separation and then spreads 
out downstream, but as Re reaches values of a few thousand the entire wake is 
filled with a mass of turbulent eddies (Figure 3-34F). 

80  In the range of Re from about 1000 to about 200,000 (Figure 3-34F) the 
pattern of flow does not change much.  The flow separates at a position about 80° 
from the front stagnation point, and there is a fully developed turbulent wake.  
The drag is due mainly to the pressure distribution on the surface of the sphere, 
with only a minor contribution from viscous shear stress.  The pressure 
distribution is as shown in Figure 3-35 and does not vary much with Re in this 
range, so the drag coefficient remains almost constant at about 0.5.  

81  At very high Re, above about 200,000, the boundary layer finally 
becomes turbulent before separation takes place, and there is a sudden change in 
the flow pattern (Figure 3-34G).  The distinction here is between laminar 
separation, in which the flow in the boundary layer is still laminar where 
separation takes place, and turbulent separation, in which the boundary layer has 
already changed from being laminar to being turbulent at some point upstream of 
separation.  Turbulent separation takes place farther around toward the rear of the 
sphere, at a position about 120–130° from the front stagnation point.  The wake 
becomes contracted compared to its size when the separation is laminar, and  
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consequently the very low pressure exerted on the surface of the sphere within the 
separation region acts over a smaller area.  Also, the pressure itself in this region 
is not as low (Figure 3-35).  The combined result of these two effects is a sudden 
drop in the drag coefficient CD, to a minimum of about 0.1.  This is sometimes 
called the drag crisis. 

 

 
 

Figure 3-35.  Flow patterns and pressure distributions around a sphere at high 
Reynolds numbers.  A) Experimental results for a laminar boundary layer; B) 
results for a turbulent boundary layer.  In each case, the theoretical pressure 
distribution for inviscid flow is shown for comparison.  The pressure is scaled by 
the stagnation pressure, ρU2/2. 

 

 

82  Have you ever wondered why golf balls have that pattern of dimples on 
them?  It is to make them go faster and farther, but why?  It is because the 
Reynolds number of the flying golf ball is just about in the range of transition 
from a laminar boundary layer to a turbulent boundary layer, and the dimples help 
to trigger the transition and thus reduce the air drag on the flying ball. 

   
SETTLING  OF  SPHERES   

Introduction  
83  This section deals with some basic ideas about settling of solid spheres 

under their own weight through still fluids.  This is an important topic in 
meteorology (hailstones), sedimentology (sediment grains), and technology 
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(cannon balls and spacecraft).  In this section we will look at the terminal settling 
velocity of spheres as an applied problem.  At the end I will make some 
comments about the complicated matter of the time and distance it takes for a 
sphere to attain its terminal settling velocity.   

84  If placed in suspension in a viscous fluid, a solid body denser than the 
fluid settles downward and a solid body less dense than the fluid rises upward.  A 
qualification is needed here, however:  the body must not be so small that its 
submerged weight is even smaller than the random forces exerted on it by 
bombardment by the fluid molecules in thermal motion.  Such small weights are 
generally associated only with the finest particles, in the colloidal size range of 
small fractions of a micron.   

85  When a nonneutrally buoyant body is released from rest in a still fluid, 
it accelerates in response to the force of gravity.  As the velocity of the body 
increases, the oppositely directed drag force exerted by the fluid grows until it 
eventually equals the submerged weight of the body, whereupon the body no 
longer accelerates but falls (or rises) at its terminal velocity, also called the fall 
velocity or settling velocity in the case of settling bodies (Figure 3-36). 

 

 
 

 
Figure 3-36.  Attainment of terminal fall velocity when a sphere is dropped from 
rest in a vessel of still liquid. 
 
 

Towing vs. Settling  
86  I promised you in Chapter 2 that I would make some comments later 

about the differences between moving a sphere through still fluid and passing a 
moving fluid by a stationary sphere.  This topic has relevance to the settling of 
spheres, so I will say some things about it at this point.    
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87  It should make sense to you that towing a sphere at velocity U through a 
still fluid by exerting a constant force FD on it is equivalent to passing a steady 
and uniform stream of fluid at velocity U around a sphere that is held fixed 
relative to the boundaries of the flow.  This is largely true, but there are two 
complications.  First, if the sphere is held fixed and the flow passes by it, the drag 
force can be influenced by even weak turbulence in the approaching flow, 
whereas if the sphere is towed through still fluid there can be no such effect.  
Second, you have seen that, in some ranges of relative velocity, eddies can form 
behind the sphere and break away irregularly; if the sphere is fixed and the fluid 
is flowing by, this causes the force to fluctuate about some average value but does 
not affect the relative velocity, whereas if the sphere is towed, either the velocity 
fluctuates along with the force or, if by definition we tow with a constant force, 
the velocity fluctuates but the force is steady.  

88  Settling of a sphere through still fluid under its own weight is exactly 
like towing the sphere vertically downward by applying a constant towing force, 
namely the weight of the sphere, which is simply the Earth’s gravitational 
attractive force on the sphere.  The weight of the sphere is constant and entirely 
independent of the state of motion, and the sphere responds by settling downward 
at some velocity through the fluid.  (As noted above, this velocity may fluctuate 
slightly with time.)  For spheres the differences between the fixed-sphere case and 
the settling-sphere case are usually assumed to be minor.  Indeed, some of the 
data in Figure 2-2 for dimensionless drag force as a function of Reynolds number 
are from settling experiments and some are from wind-tunnel experiments with 
fixed spheres, and it can be seen that there is very little scatter of the combined 
experimental curve. 

    
Dimensional Analysis  

89  To obtain an experimental curve for settling velocity we can simply 
transform the curve in Figure 2-2 for drag coefficient vs. Reynolds number for 
towed spheres into a curve based on settling velocity.  In fact, much of this curve, 
especially for low Reynolds numbers, was obtained by settling experiments in the 
first place, with the experimental results recast into the form of drag coefficients.   

90  When a sphere falls at terminal velocity the drag force FD is equal to the 
submerged weight of the particle, (1/6)πD3γ ', where γ ' is the submerged weight 
per unit volume of the particle, equal to g(ρs - ρ).  Substituting this for FD in the 
definition of the drag coefficient CD in Equation 2.3, using settling velocity w in 
place of U, and then solving for CD, 

 
 
 

CD = 
4
3 

γ 'D
ρw2           (3.22) 
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This expression for CD, which can be viewed as the “settling drag coefficient”, 
can be used in the relationship for dimensionless drag force as a function of 
Reynolds number (Equation 2.3) for spheres moving through a viscous fluid: 

 
 
 

γ 'D
ρw2  = f 

⎝
⎜
⎛

⎠
⎟
⎞ρwD

μ            (3.23) 
 

where the factor 4/3 has been absorbed into the function, just for convenience.  
Figure 3-37, which is the same as Figure 2-2 with axes relabeled and adjusted in 
scale to take account of the factor 4/3, is the  

 

 
 

Figure 3-37.  “Settling drag coefficient” γ'D/ρw2 vs. Reynolds number ρwD/μ 
based on settling velocity. 

 

 
corresponding graph of this function.  No data points are shown, because the 
curve is exactly the same as in Figure 2-3.  Figure 3-37 gives settling velocity w 
as an implicit function of ρ, U, D, and γ '.  

91  The curve in Figure 3-37 is still not very convenient for finding the 
settling velocity when the other variables are given.  This is because both w and D 
appear in the dimensionless variables along both axes.  Finding w in an actual 
problem would necessitate laborious trial-and-error computation.  To get around 
this problem the graph can be further recast into a more convenient form in which 
w appears in only one of the two dimensionless variables.  Also, because usually 
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what is desired is w as a function of D, or vice versa, it is convenient to arrange 
for D to appear only in the other variable. 

 

 

 
 

Figure 3-38.  Dimensionless settling velocity vs. dimensionless sphere size for 
settling of a sphere in a vessel of still liquid. 

 

 

92  Recall from Chapter 2 that if you have a set of dimensionless variables 
for a problem you can multiply or divide any one of them by any others in the set 
to get a new variable to replace the old one.  To get a dimensionless variable with 
w but not D, invert the left-hand variable in Equation 3.23 and multiply the result 
by the right-hand variable:  
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⎞ρw2

γ 'D  
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⎛

⎠
⎟
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ρ2w3

γ 'μ           (3.24) 
 

And to get a dimensionless variable with D but not w, square the right-hand 
variable in Equation 3.23 and multiply it by the left-hand variable: 
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ργ 'D3
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It is convenient, but not necessary, to take these two variables to the one-third 
power, so that w and D appear to the first power; w(ρ2/γ 'μ)1/3 can be viewed as a 
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dimensionless settling velocity, and D(ργ '/μ2)1/3 as a dimensionless sphere 
diameter.  Because these two new variables are equivalent to CD and Re, the 
functional relationship for CD vs. Re can just as well be written  

 

⎝
⎜
⎛

⎠
⎟
⎞ρ2

γ 'μ  
1/3

 w = f 
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⎛
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μ2  
1/3

 D        (3.26) 
 

The usefulness of Equation 3.26 is that the settling velocity appears only on the 
left side and the sphere diameter appears only on the right side.  

93  It is now a simple matter to find w for a given fluid, sphere size, and 
submerged specific weight by use of Figure 3-38, which is a plot of dimensionless 
setting velocity vs. dimensionless sphere diameter.  This curve is obtained 
directly from that in Figure 3-37; you can imagine taking the original data points 
and forming the new dimensionless variables rather than the old ones to plot the 
curve in the new coordinate axes of Figure 3-38.  This emphasizes that these two 
curves are equivalent because they are based on the same set of experimental 
data. 

 

 
 

Figure 3-39.  Definition sketch for dimensional analysis of a sphere settling 
through a still fluid. 

 

 

94  If you are unsatisfied by the roundabout way of arriving at the 
functional relationship expressed in Equation 3.24, you might consider making a 
fresh start on dimensional analysis of the problem of settling of a sphere through a 
still fluid at terminal velocity (Figure 3-39).  Settling velocity w, the dependent 
variable, must depend on fluid density ρ, fluid viscosity μ, sphere diameter D, and 
submerged weight per unit volume γ ' of the sphere.  Each of these must be 
included for the reasons given in Chapter 2.  As before, acceleration of gravity 
and sphere density do not have to appear separately in the list of variables because 
they are important only by virtue of their combined effect on γ '.  The five 
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variables w, ρ, μ, D, and γ ' should then combine into two dimensionless 
variables.  You can conveniently arrange for one to contain w but not D and the 
other to contain D but not w by using the other three variables as the “repeating” 
variables. You might verify for yourself that this procedure leads to the two 
dimensionless variables in Equation 3.26. 

 
Settling at Low Reynolds Numbers  

95  Remember from Chapter 2 that if the Reynolds number based on sphere 
diameter and relative flow velocity is less than about one, the drag force on the 
sphere is given exactly by Stokes’ Law, FD = 3πμUD.  This holds in particular for 
spheres settling under their own weight.  Using Stokes’ Law it is easy to develop 
a useful formula for the settling velocity of spheres that is valid in the Stokes 
range (Re < 1).  Write an equation that balances the submerged weight of the 
sphere, (πD3/6)γ ', by the drag force, given by Stokes’ Law, 3πDμw, where I have 
used the settling velocity w as the relative velocity of the fluid and the sphere.  
Solving for w, 

 

w =
1

18
′ γ D2

μ
      (3.27) 

 
This equation is widely cited and widely used in books and papers on settling of 
spheres and other bodies, like sediment particles, that have the approximate shape 
of a sphere, but keep firmly in mind that it applies only in the Stokes range of 
settling Reynolds numbers ρwD/μ. 
 

The Effect of Turbulence on Particle Settling 
96  One clear effect of turbulence on particle setting is the possibility of 

dispersion.  Think about arranging an experiment in which a batch or continuing 
supply of sediment particles is introduced at the free surface of a channel flow.  If 
the flow is laminar, the particles (if they are identical in size, shape, and density) 
are identical also in their settling behavior as well, and they all land on the bottom 
boundary of the flow at the same point,.  If the flow is turbulent, however, the 
settling particles land on the bottom over a wide streamwise range of points, the 
obvious reason being that each particles traverses (or, perhaps more accurately, 
finds itself within the domain of) a different set of eddies during its descent, and 
so it experiences a different set of local fluid velocities.  Both the vertical and the 
horizontal components of fluid velocities within eddies act to spread out, or 
disperse, the particle trajectories around the overall average trajectory. 

97  It might seem intuitively reasonable to you to assume that the average 
settling time of the particles in the turbulent flow is the same as the single, well-
defined settling time in the laminar flow, because the particles in the turbulent 
flow are, when viewed on the scale of the particles themselves, just settling 
through surrounding fluid that is the same as in the laminar case, and the “ups” 
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should balance out the “downs”, on average.  That cannot be quite true, however, 
if only for the reason that the drag coefficient of a sphere moving through a fluid 
is non-negligibly affected by accelerations and decelerations of the fluid that is 
moving relative to the particle, and that is exactly what is happening when the 
particle is in a turbulent flow field. 
 

 

water particle paths

+

sediment grain path

w
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us

 
Figure 3-40.  Path of a sediment particle moving in a fluid vortex.  (Figure from 
G.V. Middleton.) 

 

 

98  But there is another effect, and one that cannot be ignored, that almost 
certainly lies outside of your intuition:  under certain conditions, a settling particle 
that finds itself within a rotating eddy tends to become trapped within that eddy!  
This effect has been studied by Tooby et al. (1977) and Nielsen (1984).  In an 
ideal vortex, rotating about a horizontal axis, a particle within the rising limb 
describes a circular orbit, which ideally would be closed and would not exhibit 
any net downward motion (Figure 3-40).  In Figure 3-40, the tangential velocity 
of the fluid, u, is proportional to the distance from the center of the vortex.  
Simple vector addition of u and w, the settling velocity of the particle, products a 
circular trajectory of the sediment particle, with no net settling.  In the experiment 
by Tooby et al. (1977), particles tended to spiral slowly outwards, so that they 
would ultimately diffuse out of the vortex, but sufficiently fine sediment would be 
trapped in vortices and would move with the vortex until it dissipated.  The 
mechanism is not very sensitive to the size of the trapped particles, and it should 
tend to produce less vertical segregation by size than the classical diffusional 
theory predicts. 
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