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III. Flow Around Bends: Meander Evolution 

1. Introduction 

Hooke (1975) [paper available] – first detailed data and measurements about what 
happens around meander bends – how flow velocity and shear stress fields 
develop in the bend to address: why erosion on the outer bank? Why deposition 
on the inner bank? What controls bend morphology? What sets meander 
migration rates? 

Results limited by laboratory setting, however. Paper motivates Dietrich et al. to study a 
carefully selected natural setting: Muddy Creek, Wyoming. Chosen because: nice free-
form meanders, undisturbed, sandy bed with active, readily observable transport, small 
enough to thoroughly document, and (key) constant near-bankfull snow-melt discharge 
(annual and predictable timing) which allows observation at near steady conditions. 

Dietrich et al (1979) [paper available] used a large array of micro-velocimeters and 
bridges to study the flow without disturbing the flow or bedforms. 

This lecture summarizes the major elements of the understanding of flow, transport, and 
erosion processes in the evolution of meander bends developed in these pioneering 
studies. I will go through a simplified case emphasizing the first-order effects to draw a 
physical, intuitive picture of the operative processes. To do this I will step through each 
factor that influences the patterns of velocity and shear stress in the bend. 

Note that a more detailed analysis has been completed in the years since 1980 – a fairly 
rich literature. 

2. Preliminaries: Conservation of Mass (Sediment): “Erosion Equation”: 

Derivation of conservation of mass – the erosion equation 

SKETCH: Control reach, width Δy, length Δx, qs_in at x, qs_out at x + Δx 

If more sediment comes in than out, bed elevation goes up – deposition 
If more sediment goes out than in, bed elevation goes down – erosion 
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per unit time Δt, sediment volume in = qs_inΔtΔy 
per unit time Δt, sediment volume out = qs_outΔtΔy 

Change in sediment volume per unit time 
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For change in bed elevation, divide through by ΔxΔyΔt: 
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Note from basics of sediment transport that 
Accordingly, we can expand the erosion equation using the chain 
rule: 
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Thus we can see immediately that erosion will occur in regions of 
increasing shear stress (i.e., not necessarily in regions of high 
shear stress) and deposition will occur in regions of decreasing 
shear stress (not necessarily low shear stress). 

3. Flow and Sediment Transport around a Simple Bend 

Posit the following “Model” channel as an initial condition: mobile bed, flat channel 
floor, straight sections leading into and out of a bend with a circular arc, steady flow, 
horizontal cross-stream water surface, and no downstream variation in Qw, w, h, u (other 
than direction). 

SKETCH: High shear stress on inner bank 
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Effects on flow due to bend: 

1. High shear stress on the inner bank because shorter distance around bend 
means the water surface is slightly steeper. 

2. The flow experiences a radial acceleration around the bend. The centrifugal 
force acts in proportion to the mean velocity: 

cr
u 2!

where rc is a minimum at the bend apex, so acceleration is greatest there. 

3. Water is driven across the channel by this radial acceleration until enough 
water piles up on the outer bank to produce a “super-elevation” sufficient to 
create a pressure gradient to balance the (average) centrifugal force: 
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solving for the required super-elevation: 
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SKETCH : Illustrate the effect of super-elevation on the pattern of shear stresses 
on the bed. Highest: upstream, inside; High: downstream, outside; Low: 

;downstream, inside Lowest: upstream, outside. 

4. Cross-channel force balance discussed above is balance for radial acceleration 
of mean velocity. But we know there is a velocity structure both in the vertical 
and cross-channel directions. 

SKETCH: Cross-channel flow structure – local vertically averaged velocity must 
be balanced by local water surface slope (complex water surface topography, with 

.- - )the steepest cross channel slope above the high velocity core
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SKETCH: Vertical velocity structure – near the bed ; near the surface , 

but the pressure field is at all points in vertical profile … balances the 

mean local radial acceleration. 
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This imbalance produces a cross-stream component of flow – outward above z = 
0.4h and inward below z = 0.4h. Combined with downstream flow pattern, this 
induces the helical flow pattern characteristic of meander bends. The inward flow 
along the channel bed sweeps fine sediment up onto point bars, particularly at 
their downstream end. 

This discussion has actually neglected another force in the force balance between 
radial acceleration and pressure gradient due to super-elevation. What is it? The 
cross-channel component of shear stress owing to the velocity gradient described 
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above. However, this force is usually negligible, see Dietrich et al., 1979, 
equation 3 and discussion on page 309. 

5. Shear stress pattern and erosion/sedimentation patterns on the initially flat-bed 
bend. 

SKETCH: Initial Erosion and deposition pattern. 

Recall the Erosion Equation (conservation of mass): 
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Deposition will occur where shear stress is decreasing downstream; erosion where 
it is increasing. 

Note, however, that for cohesive banks, erosion rate will scale with local shear 
stress – focused where shear stresses are highest, as opposed to where they are 
increasing most rapidly for the mobile bed. 
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Effects: 
A. Impingement of high velocity core on outer bank due to flow inertia 
will increase shear stresses on the bank (recall shear stress depends on the 
velocity gradient, both laterally and vertically), potentially leading to 
erosion of the cohesive bank. 

B. Rapidly increasing shear stress along the outer bank leads to initial 
scour of the bed along the outer bank. This can undermine the bank and 
promote bank collapse. 

C. Rapidly decreasing shear stress along the inner bank leads to initial 
deposition of a proto-point bar along the inner bank. 

D. The onset of point bar growth causes a deflection of the flow across the 
channel. This “topographic steering” of the flow enhances bar deposition 
and bank erosion (positive feedback). Eventually the bar diverts flow and 
sediment transport around the side so effectively that the bar stops 
growing, at least until bank erosion promotes renewed deposition on the 
point bar (or vice versa). 

E. At the upper end of the point bar, the topographic steering strongly 
suppresses helical flow (water at the bed is most strongly forced to the 
outer bank, easily counteracting the pressure force that would cause 
helical return flow. The inward sweep of the helical flow is thus delayed 
until the downstream end of the point bar and moves fine sediment out of 
the pool and up onto the point bar. This sets up a strong down-stream 
fining on point bars. 
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SKETCH: flow pattern and sediment size. 

Viewgraphs: Figures from Hooke, 1975 and Dietrich et al., 1979 
illustration flow velocity and shear stress distributions around point bars. 

4. Generalized Momentum Equations Used in Dietrich et al., 1979 

Their Equation 1: 

will look a bit familiar, but will be confusing or unclear without explanation. 

From your lecture notes on flow mechanics, we derived the momentum equation for a 1-
dimensional flow (changes only in the downstream, or x-direction). 
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The first confusing thing is the i, j notation. This is just a compact way to denote that this 
equation actually represents a set of three equations, for the momentum balance in each 
of the x-, y-, and z-directions (downstream, cross-stream, and in the vertical). Simply 
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understanding the x-direction equation for a flow that varies only in the downstream 
direction (as derived in lecture) is sufficient. 

The second confusing thing is the cos (g,j) term. This simply denotes the cosine of the 
angle between the j-direction and the vertical (orientation of gravity). This is just a 
compact, general way to indicate the appropriate component of the gravitational stress in 
each of the x-, y-, and z-directions. 

!sing
For example, the x-direction component of the 

gravity vector is equal to , as we have discussed in lecture. 

The third confusion thing is that the signs on the three terms on the right hand side of the 
equation are all the opposite of the relation we derived. This is simply because 
technically g is a vector quantity that points downward, i.e., the gravitational acceleration 
is negative! In our derivations we implicitly used 

g
g to denote the absolute value of the 

gravity vector ( ). 

So breathe deep and relax when you encounter their equation 1. By the time you get to 
Equation 2 on the second page, they will have reduced everything to the 1-d, steady, 
uniform flow condition we have discussed. All of the most useful discussion in this 
insightful paper is cast in terms of the dominant forces and greatly reduced mathematics, 
much as we have emphasized in lecture. 
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