
Chapter 4

Seismology

4.1 Historical perspective

1678 – Hooke Hooke’s Law F = −c · u (or σ = Eε)

1760 – Mitchell Recognition that ground motion due to earthquakes is related to wave
propagation

1821 – Navier Equation of motion

1828 – Poisson Wave equation
→ P & S-waves

1885 – Rayleigh Theoretical account surface waves
→ Rayleigh & Love waves

1892 – Milne First high-quality seismograph → begin of observational period

1897 – Wiechert Prediction of existence of dense core (based on meteorites → Fe-alloy)

1900 – Oldham Correct identification of P, S and surface waves

1906 – Oldham Demonstration of existence of core from seismic data

1906 – Galitzin First feed-back broadband seismograph

1909 – Mohorovičić Crust-mantle boundary

1911 – Love Love waves (surface waves)

1912 – Gutenberg Depth to core-mantle boundary : 2900 km

1922 – Turner location of deep earthquakes down to 600 km (but located some at 2000 km,
and some in the air...)

1928 – Wadati Accurate location of deep earthquakes
→ Wadatai-Benioff zones

1936 – Lehman Discovery of inner core

1939 – Jeffreys & Bullen First travel-time tables
→ 1D Earth model

1948 – Bullen Density profile

1977 – Dziewonski & Toksöz First 3D global models

1996 – Song & Richards Spinning inner core?

Observations :

1964 ISC (International Seismological Centre) — travel times and earthquake locations

1960 WWSSN (Worldwide Standardized Seismograph Network) — (analog records)

1978 GDSN (Global Digital Seismograph Network) — (digital records)

1980 IRIS (Incorporated Research Institutes for Seismology)
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4.2 Introduction

With seismology1 we face the same problem as with gravity and geomagnetism;
we can simply not offer a comprehensive treatment of the entire subject within
the time frame of this course. The material is therefore by no means complete.
We will discuss some basic theory to show how expressions for the propagation of
elastic waves, such as P and S waves, can be obtained from the balance between
stress and strain. This requires some discussion of continuum mechanics. Before
we do that, let’s look at a very brief – and incomplete – overview of the historical
development of seismology. Modern seismology is characterized by alternations
of periods in which more progress is made in theory development and periods
in which the emphasis seems to be more on data collection and the application
of existing theory on new and – often – better quality data. It’s good to realize
that observational seismology did not kick off until late last century (see section
4.1). Prior to that “seismology” was effectively restricted to the development
of the theory of elastic wave propagation, which was a popular subject for
mathematicians and physicists. For some important dates, see attachment above
table (this historical overview is by no means complete but it does give an idea
of the developments of thoughts). Lay & Wallace (1995) give their view on
the current swing of the research pendulum in the following tables (with source
related issues listed on the left and Earth structure topics on the right) :

Classical Research Objectives

A. Source location A. Basic layering
(latitude, longitude, depth) (crust, mantle, core)

B. Energy release B. Continent-ocean differences
(magnitude, seismic moment)

C. Source type C. Subduction zone geometry
(earthquake, explosion, other)

D. Faulting geometry D. Crustal layering, structure
(area, displacement)

E. Earthquake distribution E. Physical state of layers
(fluid, solid)

Table 4.1: Classical Research objectives in seismology.

We will discuss some ”classical” concepts and also discuss some of the more
’current ’ topics. Before we can do this we have to deal with some basic theory.
In principle, what we need is a formulation of the seismic source, equations to
describe elastic wave propagation once motion has started somewhere, and a
theory for coupling the source description to the solution for the equations of
motion. We will concentrate on the former two problems. The seismic waves

1From the Greek words σεισµoς (seismos), earthquake and λoγoς (logos), knowledge. In
that sense, “earthquake seismology” is superfluous.
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Current Research Objectives

A. Slip distribution on faults A. Lateral variations
(crust, mantle, core?)

B. Stresses on faults B. Topography on internal
and in the Earth boundaries

C. Initiation/termination C. Anelastic properties
of faulting of the interior

D. Earthquake prediction D. Compositional/thermal
interpretations

E. Analysis of landslides, E. Anisotropy
volcanic eruptions, etc

Table 4.2: Current research objectives in seismology (after Lay & Wallace
(1995))

basically result from the balance between stress and strain, and we will therefore
have to introduce some concepts of continuum mechanics and work out general
stress-strain relationships.

Intermezzo 4.1 Some terminology

For most of the derivations we will use the Cartesian coordinate system and
denote the position vector with either x = (x1, x2, x3) or r = (x, y, z). The
displacement of a particle at position x and time t is given by u = (u1, u2, u2) =
u(x, t), this is the vector distance from its position at some previous time t0
(Lagrangian description of motion). The velocity and acceleration of the particle
are given by u̇ = ∂u/∂t and ü = ∂2u/∂2t, respectively. Volume elements are
denoted by ∆V and surface elements by δS. Body (or non-contact) forces, such
as gravity, are written as f and tractions by t. A traction is the stress vector
representing the force per unit area across an internal oriented surface δS within
a continuum, and this is, in fact, the contact force F per unit area with which
particles on one side of the surface act upon particles on the other side of the
surface.
A general form of a wave equation is ∂2u/∂2t = c2∂2u/∂2x or ü = c2∇2u,
which is a differential equation describing the propagation of a displacement
disturbance u with speed c.

We will see that the fundamental theory of wave propagation is primarily
based on two equations : Newton’s second law (

∑
F = ma = m∂2u/∂2t) and

Hooke’s constitutive law F = −cu (stating that the extension of an elastic mate-
rial results in a restoring force F, with c the elastic (spring) constant (not wave
speed as in the box above!). In one dimension, Hooke’s law can also be formu-
lated as the proportionality between stress σ and strain ε, with proportionality



140 CHAPTER 4. SEISMOLOGY

factor E is Young’s modulus : σ = Eε. We will see that this linear relationship
between stress and strain does not hold in 2D or 3D, in which case we need the
so-called generalized Hooke’s Law. For

∑
F = ma we have to consider both the

non-contact body forces, such as gravity that works on a certain volume, as well
as the contact forces applied by the material particles on either side of arbitrary
and imaginary internal surfaces. The latter are represented by tractions (”stress
vectors”). We therefore have to look in some detail at the definitions of stress
and strain.

4.3 Strain

The strain involves both length and angular distortions. To get the idea, let’s
consider the deformation of a line element l1 between x and x + δx.

Due to the deformation position x is displaced to x + u(x) and x + δx to x +
δx + u(x + δx) and l1 becomes l2.

The strain in the x direction, εxx, can then be defined as

εxx =
l2 − l1

l1
=

u(x + δx) − u(x)

δx
(4.1)

If we assume that δx is small we can linearize the problem around the ’reference
state’ u(x) by using a Taylor expansion on u(x + δx) :

u(x + δx) = u(x) +

(
∂u

∂x

)
δx + O(δx2) ≈ u(x) +

(
∂u

∂x

)
δx (4.2)

so that

εxx =

(
∂u(x)

∂x

)
=

1

2

(
∂u(x)

∂x
+

∂u(x)

∂x

)
(4.3)

which represents the normal strain in the x direction. Similar relationships
can be derived for the normal strain in the other principal directions and also for
the shear strain εxy and εxz (etc), which involve the rotation of line elements
within the medium.

The general form of the strain tensor εij is

εij =
1

2

(
∂u(xi)

∂xj
+

∂u(xj)

∂xi

)
=

1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

=
1

2

(
∂uj

∂xi
+

∂ui

∂xj

)
= εji (4.4)
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with normal strains for i = j and shear strains for i �= j. (In this discussion
of deformation we do not consider translation and/or rotation of the material
itself). Equation (4.4) shows that the strain tensor is symmetric, so that there
the maximum number of different coefficients is 6.

4.4 Stress

Stress is force per unit area, and the principle unit is Nm−2 (or Pascal : 1Nm−2 = 1Pa).

Similar to strain, we can also distinguish between normal stress, the force
F⊥ per unit area that is perpendicular to the surface element δS, and the shear
stress, which is the force F‖ per unit area that is parallel to δS (see Fig. 4.1).
The force F acting on the surface element δS can be decomposed into three
components in the direction of the coordinate axes : F = (F1, F2, F3). We
further define a unit vector n̂ normal to the surface element δS. The length of
n̂ is, of course, |n̂| = 1.

For stress we define the traction as a vector that represents the total force
per unit area on δS. Similar to the force F, also the traction tt can be decom-
posed into t = (t1, t2, t3) = t1x1 + t2x2 + t3x3. The traction t represents the
total stress acting on δS.

In order to obtain a more useful definition of the traction t in terms of
elements of the stress tensor consider a tetrahedron. Three sides of the tetra-
hedron are chosen to be orthogonal to the principal axes in the sense that ∆si

is orthogonal to xi; the fourth surface, δS, has an arbitrary orientation. The
stress working on each of the surfaces of the tetrahedron can be decomposed
into components along the principal axes of the coordinate system. We use the
following notation convention : the component of the stress that works on the
plane ⊥ x1 in the direction of xi is σ1i, etc.

Figure 4.1: Stress balancing in the stress tetrahedron.

If the system is in equilibrium then a force F that works on δS must be cancelled
by forces acting on the other three surfaces :

∑
Fi = tiδS − σ1i∆s1 − σ2i∆s2 −

σ3i∆s3 = 0 so that tiδS = σ1i∆s1 + σ2i∆s2 + σ3i∆s3. We know that the
expression we are after should not depend on our choice of ∆s nor on δS (since
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the former were just chosen and the latter is arbitrary). This is easily achieved
by realizing that δS and ∆S are related to each other : ∆si is nothing more than
the orthogonal projection of δS onto the plane perpendicular to the principal
axis xi : ∆si = cosϕiδS , with ϕi the angle between n̂, the normal to δS, and
xi. But cosϕi is in fact simply ni so that ∆si = niδS. Using this we get :

tiδS = σ1in1δS + σ2in2δS + σ3in3δS (4.5)

or

ti = σ1in1 + σ2in2 + σ3in3 (4.6)

Thus : the ith component of the traction vector t is given by a linear combination
of stresses acting in the ith direction on the surface perpendicular to xj (or
parallel to nj), where j = 1, 2, 3;

ti = σjinj (4.7)

Conversely, an element σji of the stress tensor is defined as the ith component
of the traction acting on the surface perpendicular to the jth axis (xj) :

σij = ti(xj) (4.8)

The 9 components σji of all tractions form the elements of the stress tensor.
It can be shown that in absence of body forces the stress tensor is symmetric
σij = σji so that there are only 6 independent elements :

σij =

⎛
⎝ σ11 σ12 σ13

σ21 σ22 σ12

σ31 σ32 σ13

⎞
⎠ =

⎛
⎝ σ11 σ12 σ13

σ22 σ12

σ13

⎞
⎠ (4.9)

The normal stresses are represented by the diagonal elements (i=j) and the
shear stresses are the off diagonal elements (i �= j). We can diagonalize the
stress tensor by changing our coordinate system in such a way that there are
no shear stresses on the surfaces perpendicular to any of the principal axes (see
Intermezzo 4.2). The stress tensor then gets the form of

σij =

⎛
⎝ σ11 0 0

0 σ22 0
0 0 σ33

⎞
⎠ =

⎛
⎝ σ1 0 0

0 σ2 0
0 0 σ3

⎞
⎠ (4.10)

Some cases are of special interest :

• uni-axial stress : only one of the principal stresses is non-zero, e.g.
σ1 �= 0, σ2 = σ3 = 0

• plane stress : only one of the principal stresses is zero, e.g. σ1 = 0,
σ2, σ3 �= 0
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• pure shear : σ3 = 0, σ1 = −σ2

• isotropic (or, hydrostatic) stress : σ1 = σ2 = σ3 = p (p = 1
3 (σ1 +

σ2 + σ3)) so that the deviatoric stress, i.e. the deviation from hydrostatic
stress is written as :

σ′
ij =

⎛
⎝ σ1 − p 0 0

0 σ2 − p 0
0 0 σ3 − p

⎞
⎠ (4.11)

4.5 Equations of motion, wave equation, P and

S-waves

With the above expression for the (symmetric) strain tensor (Eq. 4.4) and the
definitions of the stress tensor σij and the traction ti, we can formulate the basic
expression for the equation of motion :

∑
Fi =

∫
V

fi dV +

∫
S

ti dS (4.12)

=

∫
V

fi dV +

∫
S

σijnj dS =

∫
V

ρ
∂2ui

∂t2
dV = mai

If we apply Gauss’ divergence theorem2, this can be rewritten as

∫
V

ρ
∂2ui

∂t2
dV =

∫
V

(
fi +

∂σij

∂xj

)
dV (4.13)

ρ
∂2ui

∂t2
= fi +

∂σij

∂xj

which is Navier’s equation (also known as Cauchy’s “law of motion” from
1827). For many practical purposes in seismology it is appropriate to ignore
body forces so that the equation of motion is simplified to :

ρ
∂2ui

∂t2
=

∂σij

∂xj
or ρüi = σij,j (4.14)

2Gauss’ divergence theorem states that in the absence of creation or destruction of matter,
the density within a region of space V can change only by having it flow into or away from
the region through its boundary S :∫

S

t. dS =

∫
V

�.tdV
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Intermezzo 4.2 Diagonalization of a matrix

Many problems in (geo)physics can be simplified if we can diagonalize a matrix.
Under certain conditions (almost always satisfied in geophysics), for any square
matrix A of dimension n, there exists a n × n matrix X that diagonalize A :

X−1AX = λ = diag(λ1, ..., λn)

=

⎛
⎜⎜⎝

λ1 0 ... ... 0
0 λ2 0 ... 0
0 ... ... ... 0
0 ... 0 λn−1 0
0 ... ... 0 λn

⎞
⎟⎟⎠ (4.15)

This means that there exists a coordinate system in which A is diagonal. Di-
agonalizing A corresponds to finding this coordinate system and the values of
the diagonal elements of A in this coordinate system. We can rewrite the last
equation as follows :

AX = λX (4.16)

or

(A − λI)X = 0 (4.17)

I is the Identity matrix. The λi (i = 1, ..., n) are called the eigenvalues of A

and the columns of X are formed by n eigenvectors. Diagonalizing a matrix is
equivalent to finding its eigenvalues and eigenvectors. This is called an eigen-
value problem. Finding the eigenvalues can easily be done by solving the system
of n linear equations and n unknowns (the λi) formed by Eq. 4.17. This has a
non-trivial solution if the determinant is zero (this is called Cramer’s rule) :

|A− λI| = 0 (4.18)

The eigenvectors can then be found by replacing the eigenvalues in the system of
linear equations formed by Eq. 4.17. If all eigenvalues are different, the n eigen-
vectors are linearly independent and orthogonal. Otherwise, the eigenvalues are
said to be degenerate and the number of independent eigenvectors is given by the
number of independent eigenvalues. In the case of n independent eigenvalues,
the eigenvectors can form a new orthogonal basis and they are called principal

axes. If we change the coordinate system and use the system defined by the
principal axes, matrix A becomes diagonal and its elements are given by the
eigenvalues.
In the case of the stress tensor, equation 4.17 takes the form :

(σ − σI)n = 0 (4.19)

The three eigenvalues (also called principal stresses and represented by the
scalar σ) are thus found by solving :

|σ − σI| =

∣∣∣∣∣
σ11 − σ σ12 σ13

σ21 σ22 − σ σ23

σ31 σ32 σ33 − σ

∣∣∣∣∣ = 0 (4.20)

This will give three values for σ (σ1, σ2 and σ3). In the coordinate system
formed by the three principal axes ni, the stress tensor is diagonal, as expressed
in Eq. 4.10.
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Note that body forces such as gravity cannot always be ignored in – what is
known as – low-frequency seismology. For instance, gravity is an important
restoring force for some of Earth’s free oscillations. We can also introduce a
body force term to describe the seismic source.

We’ve derived Eq. 4.14 using index notation. Let’s state it in vector form.
The acceleration is proportional to the divergence of the stress tensor (see In-
termezzo 4.3) :

ρü = ∇ · σ (4.21)

Equation (4.14) represents, in fact, three equations (for i=1,2,3) but there are
more than three unknowns (the 6 independent elements of the stress tensor σij

plus density ρ. In this general form the equation of motion does not have a
unique solution. Also, we have introduced forces and tractions but we not yet
specified how the material reacts to the applied (non-)contact forces. We need
some physics to help us out. Specifically, we need to know the relationship
between stress and strain, i.e. a constitutive relationship.

Intermezzo 4.3 Divergence of a tensor

We know how to define the divergence of a vector. The divergence of a tensor
is simply the generalization to higher dimensions of the divergence of a vector
(remember that a vector is nothing more than a tensor of dimension 1).
The divergence of a vector v is a scalar denoted by �.v and given by :

�.v =
∑

i

∂vi

∂xi

=
∂v1

∂x1

+
∂v2

∂x2

+
∂v3

∂x3

(4.22)

Similarly, the divergence of a dimension 2 tensor is a vector whose components
are given by :

(�.σ)j =
∑

i

∂σij

∂xi

=
∂σ1j

∂x1
+

∂σ2j

∂x2
+

∂σ3j

∂x3
(4.23)

And we can further generalize : the divergence of a n-dimension tensor is a
tensor of dimension n-1 obtained in a way similar to Eq. 4.23.

In one-dimension this relationship is given, as mentioned before, by σ = Eε
(or σi = Eεi, where E is the Young’s modulus, which is the ratio of uniaxial
stress to strain in the same direction, i.e. a measure of the resistance against
extension. A simple example demonstrates that in more dimensions this scalar
proportionality breaks down. Imagine an elastic band : if one stretches this
band in one direction, say the x1 direction, than the band will extend in that
direction. In other words there will be strain e11 due to stress σ11. However, the
strap will also thin in the x2 and x3 directions; so e22 = e33 �= 0 even though
σ22 = σ33 = 0.
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Clearly, a simple scalar relationship between the stress and strain tensors
is invalid : σij �= Eεij . Somehow we must express the elements of the stress
tensor as a linear combination of the elements of the strain tensor. This linear
combination is given by a 4th order tensor cijkl of elastic constants :

σij = Cijklεkl (4.24)

This form of the constitutive law for linear elasticity is known as the gener-
alized Hooke’s law and C is also known as the stiffness tensor. Substitution of
eq (4.24) in (4.14) gives the wave equation for the transmission of a displacement
disturbance with wave speed dependent on density ρ and the elastic constants
in Cijkl in a general elastic, homogeneous medium (in absence of body forces) :

ρüi = ρ
∂2ui

∂t2
=

∂

∂xj

[
Cijkl

∂uk

∂xl

]
= Cijkl

∂

∂xj

∂uk

∂xl
= Cijkluk,lj (4.25)

In three dimensions, a fourth order tensor contains 34 = 81 elements. What
did we gain by doing all this? After all, we mentioned above that we needed to
introduce a constitutive relationship in order to solve the wave equation (Eq.
4.14) since the number of equations was less than the number of unknowns.
Now we have arrived at a situation (Eq. 4.25) in which we have 3 equations
to solve for 82 unknowns (density + 81 elastic moduli), so the introduction of
physics does not seem to have helped us at all! The situation improves once
we consider the intrinsic symmetry of the tensors involved. The symmetry
of the stress and strain tensors leads to symmetry of the elasticity tensor :
Cijkl = Cijlk = Cjilk . This reduces the number of independent elements in
Cijkl to 6×6=36. It can also be demonstrated (with less trivial arguments)
that Cijkl = Cklij , which further reduces the number of independent elements
in Cijkl to 21. This represents the most general (homogeneous) anisotropic
medium (anisotropy in this context means that the relationship between stress
and strain is dependent on the direction i).

By restricting the complexity of the medium we can further reduce the num-
ber of independent elements of the elasticity tensor. For instance, one can inves-
tigate special cases of anisotropy by allowing directional dependence in a plane
perpendicular to certain symmetry axes only. We will come back to this later.

The simplest case is a homogeneous, isotropic medium (i.e. no directional
dependence of elastic properties), and it can be shown (see, e.g., Malvern (1969))
that in this situation the general form of the 4th order (linear) elasticity tensor
is

Cijkl = λδijδkl + µ(δikδjl + δilδjk) (4.26)

where λ and µ are the only two independent elements; λ and µ are known as
Lamé’s (elastic) constants (or moduli), after the French mathematician G. Lamé.
(The Kronecker (delta) function δij = 1 for i = j and δij = 0 for i �= j).
Substitution of Eq. (4.26) in (4.24) gives for the stress tensor

σij = Cijklεkl = λδijεkk + 2µεij = λδij∆ + 2µεij (4.27)
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with ∆ the cubic dilation, or volume change. This form of Hooke’s law was
first derived by Navier (1820-ies). The Lamé constant µ is known as the shear
modulus or rigidity : it is a measure of the resistance against shear or torsion
of the medium. The shear modulus is large for very stiff material, but is small
for media with low viscosity (µ = 0 for water or for liquid metallic iron in the
outer core). The other Lamé constant, λ, does not have much (general) physical
meaning by itself, but defines important elastic parameters in combination with
the shear modulus µ. Of most interest for us right now is the definition of κ,
the bulk modulus or incompressibility : κ = λ+2/3µ. The bulk modulus is
a measure of the resistance against volume change : κ = −∂P/∂∆, with P the
pressure and ∆ the cubic dilatation, and is large when the change in volume is
small even for large (hydrostatic) pressure. The minus sign is necessary to keep
κ > 0 since ∆ < 0 when P > 0. For isotropic media other important elastic
parameters, such as the Poisson’s ratio, i.e. the ratio of lateral contraction to
longitudinal extension, and Young’s modulus can also be expressed as linear
combinations of λ and µ (or κ and µ). We can readily see that the stress tensor
consists of terms representing (resistance to) either changes in volume or shear
(or torsion).

stress : effects of volume change + torsion (or shear) of material

This is a fundamental result and it underlies, what we will see below, the for-
mulation of wave propagation in terms of compressional (dilatational) P and
transversal (shear) S-waves.

With the above constitutive relationships we can now derive the equation
that describes wave propagation in a homogeneous, isotropic medium

ρ
∂2ui

∂t2
= (λ + µ)

∂

∂xi

∂uk

∂xk
+ µ∇2ui (4.28)

which represents a system of three equations (for i=1,2,3) with three unknowns
(ρ, λ, µ). Note that for practical purposes in seismology these parameters are not
really constant; in Earth they are functions of position r and vary significantly,
in particular with depth.

4.6 P and S-waves

There are several ways to demonstrate that solutions of the equation of motion
essentially consist of a dilatational and a rotational term, the P and S-waves,
respectively. Using vector notation the equation of motion is written as

ρü = (λ + µ)∇(∇ · u) + µ∇2u (4.29)

or, by making use of the vector identity

∇2u = ∇(∇ · u) − (∇×∇× u), (4.30)
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we can write the equation of motion as :

ρü = (λ + 2µ)∇(∇ · u) −µ(∇×∇× u)
↑ ↑

dilatational rotational
(4.31)

which is a system of three partial differential equations for a general displace-
ment field u through an unbounded, homogeneous, and isotropic medium.

In general, it is difficult to solve this system directly for the displacement u.
Typically, one tries to decompose the general wave equation into separate equa-
tions that relate to P- and S-wave propagation. One approach is to eliminate di-
rectly any rotational contributions to the displacement by taking the divergence
of Eq. (4.31) and using the property that for a vector field a, ∇ · (∇× a) = 0.
Similarly we can eliminate the dilatational contributions by taking the rotation
of (4.31) and using the identity that, for a scalar field µ, ∇×∇µ = 0. Assuming
no body force f , we get :

• Taking the divergence leads to

ρ
∂2(∇ · u)

∂t2
= (λ + 2µ)∇2(∇ · u) (4.32)

or, with ∇ · u = Θ,

∂2Θ

∂t2
= α2∇2Θ (4.33)

which is a scalar wave equation that describes the propagation of a volume
change Θ through the medium with wave speed

α =

√
λ + 2µ

ρ
=

√
κ + 4/3µ

ρ
(4.34)

In general κ = κ(r), µ = µ(r), ρ = ρ(r) ⇒ α = α(r)

• Taking the rotation leads to

ρ
∂2(∇× u)

∂t2
= (λ + 2µ)∇×∇(∇ · u) − µ∇× (∇×∇× u) (4.35)

which, with ∇×∇(∇ · u) = 0 and the vector identity as used above (and
again using ∇ · (∇× a) = 0), leads to :

∂2(∇× u)

∂2t
= β2∇2(∇× u) (4.36)
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This is a vector wave equation that describes the transmission through a
medium of a rotational disturbance ∇× u with wave speed

β =

√
µ

ρ
(4.37)

In general µ = µ(r), ρ = ρ(r) ⇒ β = β(r)

The dilatational and rotational components of the displacement field are
known as the P and S-waves, and α and β are the P and S-wave speed, respec-
tively.

Another (more elegant) way to see that solutions of the wave equation are
in fact P and S-waves is by realizing that any vector field can be represented by
a combination of the gradient of some scalar potential and the curl of a vector
potential. This decomposition is known as Helmholtz’s Theorem and the
potentials are often referred to as Helmholtz Potentials. Using Helmholtz’s
Theorem we can write for the displacement u

u = ∇Φ + ∇× Ψ (4.38)

and

∇.Ψ = 0 (4.39)

with Φ a rotation-free scalar potential (i.e. ∇× Φ = 0) and Ψ the divergence-
free vector potential. Substitution of (4.38) into the general wave equation (4.31)
(and applying the vector identity (4.30)) we get :

∇[(λ + 2µ)∇2Φ − ρΦ̈] + ∇× [µ∇2Ψ − ρΨ̈] = 0 (4.40)

which is a third-order differential equation3. Equation (4.40) can be satisfied
by requiring that both

(λ + 2µ)∇2Φ − ρΦ̈ = 0 (4.41)

which is a scalar wave equation for the propagation of the rotation-free displace-
ment field Φ with wave speed

α =

√
λ + 2µ

ρ
=

√
κ + 4/3µ

ρ
(4.42)

and

µ∇2Ψ− ρΨ̈ = 0 (4.43)

3Strictly speaking this is not the way to formulate the problem. The need to solve third-
order differential equations could have been avoided if the problem was set up in a different
way by making use of what is known as Lamé’s theorem. This also involves Helmholtz
potentials. See, for instance, Aki & Richards, Quantitative Seismology (1982) p. 67-69.
This mathematical correctness is, however, not required for a basic understanding of the
decomposition in P and S terms
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which is a vector wave equation for the propagation of the divergence-free dis-
placement field Ψ with wave speed

β =

√
µ

ρ
(4.44)

Comparing Eq. 4.33 and 4.41, we can identify Φ with the volume change (∇ ·u
is called the cubic dilatation). Similarly, Ψ can be identified with the rotational
component of the displacement field by comparing Eq. 4.36 and 4.42.

It is often much easier to solve the wave equations (4.41) and (4.43) than to
solve the equation of motion directly for u, and from the solution for the poten-
tials the displacement u can then determined directly by Eq. (4.38). Note that
even though P and S-waves are often treated separately, the total displacement
field comprises both wave types.

Let’s now consider a Cartesian coordinate system with z oriented downward,
x parallel with the plane of the paper, and y out of the paper. We’ll make the
x-z plane the special plane of the problem. Because ∂/∂yΦŷ = 0, we can write :

∇Φ =
∂

∂x
Φx̂ +

∂

∂z
Φẑ (4.45)

and

∇ × Ψ =

∣∣∣∣∣∣
∂/∂x ∂/∂y ∂/∂z
Ψx Ψy Ψz

x̂ ŷ ẑ

∣∣∣∣∣∣ (4.46)

Therefore,

ux =
∂Φ

∂x
− ∂Ψy

∂z

uy =
∂Ψz

∂x
− ∂Ψx

∂z

uz =
∂Φ

∂z
+

∂Ψy

∂x
(4.47)

The displacement direction from Φ is in the x-z plane and it is compressional
— Φ is the P -wave potential. P wave propagation is thus rotation-free and has
no components perpendicular to the direction of wave propagation, k : it is
a longitudinal wave with particle motion in the direction of k. In contrast,
the particle motion associated with the purely rotational S-wave is in a plane
perpendicular to k : transverse particle motion can be decomposed into vertical
polarization, the so-called SV wave, and horizontal polarization, the so-called
SH-wave (see Fig. 4.2) The displacement uy from the SV -wave potential is in
the same plane. In this formulation, uy could just as well have been called the
SH -wave potential with displacement direction perpendicular to the x-z-plane.
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Figure 4.2: P and S waves : partical motion and propagation
direction.

4.7 From vector to scalar potentials – Polariza-

tion

Using the Fourier transform, we show that the vector decomposition with Φ
and Ψ can be reduced into three equations with the scalar potentials Φ, ΨSV

and ΨSH (waves are typically described by oscillatory functions, i.e. complex
exponentials. It is therefore natural to move the analysis to the frequency
domain, i.e. to use Fourier transforms). We will write u(r, t) for the time
and space domain displacement, and u(r, ω) for the displacement in space and
frequency. The transformation to the frequency domain is done by means of the
(temporal) Fourier transform, which is defined as :

u(r, ω) =

∞∫
−∞

u(r, t)eiωt dt (4.48)

u(r, t) =
1

2π

+π∫
−π

u(r, ω)e−iωt dω (4.49)

It is easy to see how the time derivative in a partial differential equation (PDE)
brings out a factor of iω. This can be verified using the PDE obtained in section
4.6 :

ρ
∂2u

∂t2
= (λ + 2µ)∇(∇ · u) − µ∇× (∇× u) (4.50)

The separation of the equation of motion into two parts was done in section
4.6. It can also be done in the frequency domain : using Eq. 4.49 and Eq. 4.38,
Eq. 4.50 (the equation of motion) becomes :

ω2Φ = −α2
∇ · u (4.51)

ω2Ψ = −β2
∇ × u (4.52)

We thus easily get :



152 CHAPTER 4. SEISMOLOGY

Figure 4.3: Successive stages in the deformation of a block of material by P-
waves and SV-waves. The sequences progress in time from top to bottom and
the seismic wave is travelling through the block from left to right. Arrow marks
the crest of the wave at each satge. (a) For P-waves, both the volume and the
shape of the marked region change as the wave passes. (b) For S-waves, the
volume remains unchanged and the region undergoes rotation only.

α2∇2Φ = −ω2Φ

β2∇2ΨSV = −ω2ΨSV (4.53)

β2∇2ΨSH = −ω2ΨSH

We now have ordinary differential equations (ODEs), also known as Helmholtz
equations, which are much easier to solve than PDEs. (NB one can readily
see that ∇Φ would lead to −ikΦ and ∇2Φ to k2Φ; therefore k2

α = fracω2α2,
k2

β = fracω2β2.)

Figure by MIT OCW.

(A) (B)
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4.8 Solution by separation of variables

In a way, we’ve solved the wave equation by realizing that we could reduce it to
an ordinary differential equation using the Fourier transform. So we knew the
solution would be a complex exponential in the time variable (it is a “natural”
way of describing a wave). We will now justify the validity of this approach by
attempting to solve the following partial differential equation :

c2∇2Φ =
∂

∂t2
Φ (4.54)

without resorting to the Fourier transform.
If we propose a solution by separation of variables :

Φ = X(x)Y (y)Z(z)T (t) (4.55)

and plug Eq. 4.55 into Eq. 4.54, we obtain :

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
− 1

c2T

d2T

dt2
= 0 (4.56)

The partial derivatives are regular derivatives now : we went from a PDE to
ordinary differential equations (ODE). Each of these terms needs to be constant.
We can pick these constants (ω2 for T , and k2

x, k2
y and k2

z for the spatial func-
tions) but they will not be independent (they are linked to one another through
Eq. 4.56). If we pick ω, kx and ky, then kz is not independent anymore and
satisfies :

k2
z =

ω2

c2
− k2

x − k2
y (4.57)

With those constants, it is easy to show that X , Y , Z and T are oscillatory
functions :

X ∼ exp(±ikxx)

Y ∼ exp(±ikyy)

Z ∼ exp(±ikzz)

T ∼ exp(±iωt) (4.58)

We have obtained solutions to the wave equation. Of course any linear
combination of particular solutions leads to the general solution, and also we
need to pick the sign in Eq. 4.58 (from the boundary conditions). Relation
4.57 is called a dispersion relation. kx, ky and kz can be seen as the cartesian
component of a vector k and Φ can be written as an oscillatory function of the
type

Φ ∝ exp(i(k · r − ωt)) (4.59)

These waves are called plane waves and k is the direction of wave propagation.
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4.9 Plane waves

We’ve called functions of the type exp(i(k · r − ωt)) plane waves. Let’s look at
a few characteristics.

Traveling waves Let’s first notice that plane waves are of the general form
describing traveling waves :

Φ(x, t) = f(x − ct) + g(x + ct) (4.60)

with f and g arbitrary functions, provided that they are twice differentiable
with regard to space and time (and that the second derivatives are continuous).
After all, they need to solve Φ̈ = c2∇2Φ. This is referred to as d’Alembert’s
solution. The function f(x − ct) represents a disturbance propagating in the
positive x direction with speed c. The function g(x+ct) represents a disturbance
propagating in the negative x axis : this part of the solution will be ignored
in the following, but it must be taken into account when dealing with wave
interference.

Wavelength
With k = 2π/λ, the spatial part can be manipulated as follows:

ei 2π
λ

x = ei 2π
λ

xei2πN = ei 2π
λ

(x+Nλ) (4.61)

to show that λ is indeed the wave length — after this distance, the displacement
pattern repeats itself.

Figure 4.4: Plane waves : propagating disturbances.

Phase
With increasing time t the argument of function f does not change provided

that x also increases (hence the propagation in the positive x axis). In other
words, if the argument remains constant it means that the shape defined by
function f translates through space. The argument of f , x− ct, is referred to as
the phase; one can define the wave front as the propagating function for a given

Figure by MIT OCW.

t = t0
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X1 = X0 X0 X'
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value of the phase. That c is the phase velocity is easily obtained by considering a
constant phase at times t and t′ (x−ct = x′−ct′ ⇒ c = (x′−x)/(t′−t) ≈ dx/dt ≡
speed).

Wavefront

A wavefront is a surface through all points of equal phase, i.e. a surface
connecting all points at the same travel time T from the source (see Fig. 4.5).
In other words, at the wave front, all particles move in phase. Rays are the
normals to the wave fronts and they point in the direction of wave propagation.
The use of rays, ray paths, and wave fronts in seismology has many similarities
with optics, and is called geometric ray theory.

Figure 4.5: Seismic wavefronts.

Plane waves have plane wave fronts. The function Φ remains unchanged for
all points on the plane perpendicular to the wave vector : indeed, on such a
plane, the dot product k · r is constant.

At distances sufficiently far from the source body waves can be model-led
as plane waves. As a rule of thumb : observer must be more than 5 wave
lengths away from source to apply far field — or plane wave — approximation.
Closer to the source one would need to consider spherical waves. Note that a
seismogram corresponds to the recording of u = u(r0, t) at a fixed position r0;
i.e. the displacement as a function of time that records the passage of a wave
group past r0.

Polarization direction

The polarization direction is different from the propagation direction. As
already mentionned in sections 4.8 and 4.7, all waves propagate in the direction
of their wave vector k. The P -wave displacement (∇Φ) is parallel with the k.
The SV -displacement (∇ × (ŷΨ)) is perpendicular to this, in the x − z plane,
and the SH-displacement is out of the plane.
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To indicate explicitly the propagation in the direction of or perpendicular to
wave vector k, one sometimes also writes

for P-waves: for S-waves:

Φ(r, t) = Ank ei(k·r−ωt) Φ(r, t) = Bn × k ei(k·r−ωt)
(4.62)

Low- and high-frequency seismology
The variables used to describe the harmonic components are related as fol-

lows;

Angular frequency ω = kc
Wavelength λ = cT = 2π/k
Wavenumber k = ω/c
Frequency f = ω/2π = c/λ
Period T = 1/f = λ/c = 2π/ω

Seismic waves have frequencies f ranging roughly from about 0.3 mHz to
100 Hz. The longest period considered in seismology is that associated with
fundamental free oscillations of the earth : T ≈ 59 min. For a typical wave
speed of 5 km/s this involves signal wavelengths between 15,000 km and 50m.
A loose subdivision in seismological problems is based on frequency, although
the boundaries between these fields are vague (and have no physical meaning) :

low frequency seismology f <20 mHz λ > 250 km
high frequency seismology 50 mHz < f <10 Hz 0.5 km < λ < 100 km
exploration seismics: f > 10 Hz λ < 500 m

4.10 Some remarks

1. The existence of P and S-waves was first demonstrated by Poisson (in
1828). He also showed that P and S-type waves are, in fact, the only solu-
tions of the wave equations for an unbounded medium (a ’whole’ space), so
that u = ∇Φ+∇×Ψ provides the complete solution for the displacement
in an elastic, isotropic and homogeneous medium. Later we will see that
if the medium is not unbounded, for instance a half-space with perhaps
some stratification, there are more solutions to the general equation of
motions. Those solutions are the surface (Rayleigh and Love) waves.

2. Since κ > 0 and µ ≥ 0 ⇒ α > β : P-waves propagate faster than shear
waves! See Fig. 4.6.

3. It can be shown that independent propagation of the P and S-waves is only
guaranteed for sufficiently high frequencies (the so-called high-frequency
approximation, “high frequency” in the sense that spatial variations in
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elastic properties occur over much larger distances than the wavelength
of the waves involved) underlies most (but not all) of the theory for body
wave propagation).

4. The three components of the wave field (P, SV, and SH-waves, see section
4.7 for more details) can be recorded completely with three orthogonal
sensors. In seismometry one uses a vertical component [Z] sensor along
with two horizontal component sensors. In the field the latter two are
oriented along the North-South [N] and East-West [E] directions, respec-
tively. Fig. 4.7 is an example of such a three-component recording; we
will come back to this in more detail later in the course.
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Figure 4.6: P and S wave speed in the ak135 Earth model.

4.11 Nomenclature of body waves in Earth’s in-

terior

At this stage it is useful to introduce the jargon used to describe the different
types of body wave propagation in Earth’s interior. We will get back to several
wave propagation issues in more detail after we have discussed the basics of
ray theory and the construction and use of travel time curves. There are a few
simple basic “rules”, but there are also some inconsistencies :

• Capital letters are used to denote body wave propagation (transmission)
through a medium. For example, P and S for the compressional and shear
waves, respectively, K and I for outer and inner core propagation of com-
pressional waves (K for German ’Kerne’; I for Inner core), and J for shear
wave propagation in the Inner Core (no definitive observations of this seis-
mic phase, although recent research has produced compelling evidence for
its existence).
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Figure 4.7: Example of a three-component seismic record

• Lower case letters are either used to indicate either reflections (e.g., c
for the reflection at the CMB, i for the reflection at the ICB, and d for
reflections at discontinuities in the mantle, with d standing for a particular
depth (e.g., ’410’ or ’660’ km), or upward propagation of body waves
before they are reflected at Earth’s surface (e.g., s for an upward traveling
shear wave, p for an upward traveling P wave). Note that this is always
used in combination of a transmitted wave : for example, the phase pP
indicates a wave that travels upward from a deep earthquake, reflects at
the Earth’s surface, and then travels to a distant station.

Figure 4.8: Nomenclature of body waves
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4.12 More on the dispersion relation

We have already introduced the concept of dispersion (Eq. 4.57). Searching for
a solution by separation of varibles, we have seen that the solution to the wave
equation is an exponential both in the time and space domain. We had, how-
ever,already shown the oscillatory behavior of the solution in the time domain
by using the time Fourier transform. In this section, we go one step further.
Predicting that the solution will be a complex exponential in the spatial domain
as well, we will investigate what insight the spatial Fourier-transform will bring
us. Time and space are linked through the wave equation (it is a PDE) – the
linkage between them is by the dispersion relation which we are deriving here.

As definition for the spatial Fourier transform and its inverse, we take

Φ(k, ω) =

∫
V

Φ(r, ω)e−ik·r d3r (4.63)

and

Φ(r, ω) =
1

(2π)3

∫
K

Φ(k, ω)eik·r d3k (4.64)

The integrations are over all of physical space V (dxdydz) and all of wave
vector space K (dkxdkydkz), respectively. The dot product k ·r = kqxq with the
Einstein summation convention. Remember also that k2

p = kpkp = |k| = k2.We
need the Laplacian of Φ, this is given by :

∇2Φ =
∂2

∂xp∂xp
=

1

(2π)3

∫
K

Φ(k, ω)eikqxq i2k2
p d3k (4.65)

Comparison with Eq. 4.54 leads to (call α or β now c) :

−k2 +
ω2

c2
= 0 or |k| =

∣∣∣ω
α

∣∣∣ (4.66)

We can quickly convert this dispersion relation into something you’re all familiar
with : with k = 2π/λ and f = ω/(2π), we get λf = c : the frequency of a wave
times its wave lengths gives the propagation speed. We will discuss this in more
detail below.

The complete solution to the wave equation is thus given by inverse trans-
formation of Φ(r, ω) as follows :

Φ(r, t) =
1

(2π)4

+∞∫
−∞

+∞∫
−∞

+∞∫
−∞

Φ(kx, ky, ω, z)ei(k·r−ωt) dkx dky dω (4.67)

There are three independent quantities involved here (not four) : kx, ky and
ω, and their relationship is given by the dispersion equation. In other words,

k · r = kxx + kyy + z

(
ω2

c2
− k2

x − k2
y

)1/2

(4.68)



160 CHAPTER 4. SEISMOLOGY

It’s important to see Eq. 4.67 as what it is : a superposition (integral) of plane
waves with a certain wave vector and frequency, each with its own amplitude.
The amplitude is a coefficient which will have to be determined from the initial
or boundary conditions.

We thus have seen that the dispersion equation can be obtained either by
solving the wave equation by separation of variables or by introducing the time
and spatial Fourier transforms.

4.13 The wave field — Snell’s law

In this section, we’ll use plane wave displacement potentials to solve a sim-
ple problem of wave propagation. Not only will we understand why and how
reflections, refractions and phase conversions happen, but we’ll also derive an
important relation for plane waves in planar media known as Snell’s law.

Let’s start with a plane P -wave incident on the free surface, making an angle
with the normal i. We can identify the P -wave with its wave vector. In our
case, we know that

kx =
∣∣∣ω
α

∣∣∣ sin i and kz = −
∣∣∣ω
α

∣∣∣ cos i (4.69)

Two kinds of boundary conditions are used in seismology — there are the
kinematic ones, which put constraints on the displacement, and the dynamic
ones, which constrain the stresses or tractions. The free surface needs to be
traction-free. We remember that the traction vector was given by dotting the
stress tensor into the normal vector representing the plane on which we are
computing the tractions : ti = σijnj . For a normal vector in the positive
z-direction, the traction becomes :

t(u, ẑ) = (σxz , σyz, σzz) (4.70)

For isotropic materials, we have seen the following definition for the stress ten-
sor :

σij = λ(∇ · u)δij + µ

(
∂ui

∂xj
+

∂uj

∂xi

)
(4.71)

Tractions due to the P wave

We know that the displacement is given by the gradient of the P -wave dis-
placement potential Φ (see Eq. 4.47) :

u = ∇Φ =

(
∂Φ

∂x
, 0,

∂Φ

∂z

)
(4.72)

Therefore the required components of the stress tensor are :
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σxz = 2µ
∂2Φ

∂x∂z
(4.73)

σyz = 0 (4.74)

σzz = λ∇2Φ + 2µ
∂2Φ

∂2z
(4.75)

Tractions due to the SV wave

The displacement is given as the rotation of the Ψ potential (see Eq. 4.47) :

u =

(
−∂Ψ

∂z
, 0,

∂Ψ

∂x

)
(4.76)

For the stress tensor, we find :

σxz = µ

(
∂2Ψ

∂x2
− ∂2Ψ

∂z2

)
(4.77)

σxz = 0 (4.78)

σzz = 2µ
∂2Ψ

∂x∂z
(4.79)

Tractions due to the SH wave

The SH wave, as we’ve seen, has only one component in this coordinate
system :

u = (0, uy, 0) (4.80)

and the stress tensor components are given by

σxz = 0 (4.81)

σyz = µ
∂uy

∂z
(4.82)

σzz = 0 (4.83)

Comparing Eqs. 4.75 and 4.79, we see how P and SV waves are naturally
coupled. In this plane-wave plane-layered case, the P -wave had energy only
in the x- and z-component, and so did SV . Upon reflection and refraction,
energy can be transferred from the incoming P -wave to a reflected P -wave and
a reflected SV -wave. No SH waves can enter the system — they have all their
energy on the y-component.

Analogously to Eq. 4.69, we can represent the incoming P , the reflected P
and the reflected SV wave by the following slownesses :
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P inc =

(
sin i

α
, 0,

− cos i

α

)
(4.84)

P refl =

(
sin i∗

α
, 0,

cos i∗

α

)
(4.85)

SV refl =

(
sin j

β
, 0,

cos j

β

)
(4.86)

Thus the total P -potential Φ is made up from the incoming and reflecting P -
wave, and the shear-wave potential Ψ is given by the reflected SV -wave. All of
them, of course, have the plane wave form, so that we can write :

Φinc = A exp

[
iω

(
sin i

α
x − cos i

α
z − t

)]
(4.87)

Φrefl = B exp

[
iω

(
sin i∗

α
x +

cos i∗

α
z − t

)]
(4.88)

Ψrefl = C exp

[
iω

(
sin j

α
x +

cos j

α
z − t

)]
(4.89)

As pointed out before, there are no kinematic boundary conditions on the
free surface. The displacement of the free surface is unconstrained, and above
it there is no displacement at all. The dynamic boundary conditions, however,
are non-trivial. The tractions must vanish on the free surface : so σxz = σyz =
σzz = 0 at z = 0. It is easy to see that, with z = 0, the sum of the three plane
wave displacement potentials will be of the type

A exp

[
iω

(
sin i

α
x − t

)]
+ B exp

[
iω

(
sin i∗

α
x − t

)]

+ C exp

[
iω

(
sin j

α
x − t

)]

Hence, for this sum to be zero for all x and t, we need :

sin i

α
=

sin i∗
α

=
sin j

β
≡ p (4.90)

Thus, for plane waves in plane-layered media, the whole system of rays is
characterized by a common horizontal slowness. This is true for the whole wave
field of reflected and transmitted (refracted) waves. Eq. 4.90 is known as Snell’s
law and p is called the ray parameter. In the following paragraph, a more
general principle called Fermat’s principle is used to prove Snell’s Law.
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4.14 Fermat’s Principle and Snell’s law

An important principle in optics is Fermat’s principle, which governs the geom-
etry of ray paths. This principle states that a wave propagating from position
A to position B follows a path of stationary time. The principle of stationary
time plays a fundamental role in high frequency seismology. Note that station-
ary time does not necessarily mean minimum time; it can also be a maximum
time.

Figure 4.9: The principle of stationary time.

Consider Fig. 4.9. A ray leaves point P that is in a medium with wave
speed c1 and travels to point Q in a medium with wave speed c2. What path
will the ray take to Q? Since the wave speeds in the media are constant the ray
path in each medium is a straight line, so that in this simple case the geometry
is completely defined by the positions of P , Q, and the point x where the ray
crosses the interface.

The travel time on an arbitrary path between P and Q is given by

tP−Q =
d

c1
+

e

c2
=

√
a2 + x2

c1
+

√
b2 + (c − x)2

c2
(4.91)

For the path to be a stationary time path (i.e. time is maximum or minimum)
we simply set the spatial derivative of the travel time to zero :

dT

dx
= 0 =

x

c1

√
a2 + x2

− c − x

c2

√
b2 + (c − x)2

(4.92)

and note that

x√
a2 + x2

= sin i1 and
c − x√

b2 + (c − x)2
= sin i2 (4.93)

This gives Snell’s law :

sin i2
c2

=
sin i1
c1

≡ p (4.94)

p is called the ray parameter.
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One can expand on this simple geometry and consider many more layers,
but the result is the same : the ray parameter p is constant along the entire ray!
As a ray enters material of increasing velocity, the ray is deflected toward the
horizontal; if the ray enters material with lower velocity, the ray is deflected to
the vertical. In seismology the angle between the ray and the vertical is referred
to as the angle of incidence (also, take-off angle).

4.15 Ray geometries of the wave field

For most applications we have to deal with a complex wave field : in each layer
of a stratified medium there can be 6 different body wave groups : the up- and
down-going P, SV, and SH-waves. The propagation of such a wave field through
a stratified medium (a stack of horizontal layers or spherical shells in which the
wave speed is constant) is controlled by Snell’s law (Fermat’s Principle) and
boundary conditions.

The wave field is determined by reflections, refractions, and phase con-
versions; for instance, a down-going P wave can reflect at an interface and part
of its energy can be transmitted to the other side, and part of its energy can
(or often has to be) converted to SV-wave energy (see Fig. 4.10).

Figure 4.10: Ray conversions at interfaces.

The incidence angles of the reflected and refracted waves that compose this
complex wave field are controlled by an extended form of Snell’s law. For this
example, Snell’s law is :

sin i1
α1

=
sin j1
β1

=
sin i2
α2

=
sin j2
β2

≡ p (4.95)

This generalization of Snell’s law shows an important concept that the whole
system of seismic waves produced by reflection and transmission of plane waves
in a stratified medium is characterized by the value of their common horizontal
slowness, or the ray parameter p. It can also be used directly to determine the
angles for critical reflection and refraction. The ray parameter is constant not
only for a single ray, but for the entire wave field generated by reflection and
refraction of an incoming P or S-wave.
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4.16 Travel time curves and radial Earth struc-

ture

We have been developing some basic theory and concepts of body wave seis-
mology. One of the major objectives of seismology is to extract structural
information about Earth’s structure from the observed data, the seismograms.
We will discuss some rather classical techniques to do this.

Snell’s Law

We derived Snell’s law for a ”flat” Earth :

sin i1
c1

=
sin i2
c2

= . . . =
sin in
cn

= constant ≡ p, the ray parameter (4.96)

The ray parameter is constant along the entire ray path, and is the same for
all rays (reflections, refractions, conversions) associated with the same incoming
ray. The ray parameter plays a very important role in seismology.

Snell’s Law shows that the ray parameter is inversely proportional to velocity,
or proportional to 1/velocity, which is the slowness. In seismology it is often
more convenient to use slowness instead of wave speed. One significant advantage
of the slowness vector is that it can be added vectorially, whereas this is not
always justified (in our context) for the velocity.

s = (s1, s2, s3) = s1x1 + s2x2 + s3x3 (4.97)

The vector summation for velocity can give practical problems : consider,
for instance, the plane wave that propagates in the direction k. The apparent
velocity c1 measured at the surface (from observations at several stations) is
larger than the true velocity c : with i the angle of incidence, c1 = c/ sin i > c,
so that c �= c1 + c3.

From Fig. 4.11 we can easily derive two other important relationships :

sin i =
ds

dx1
= c

dt

dx1
=

c

c1
⇒ p =

sin i

c
=

dt

dx1
=

1

c1
(4.98)

Figure 4.11: Derivation of Snell’s law.
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1. The ray parameter p is 1/cx, which is referred to as the horizontal slow-
ness!

2. the ray parameter is simply the derivative of the travel time T with hor-
izontal distance. This will prove to be of major importance (and conve-
nience!).

For a spherical earth we can derive a relationship for the ray parameter that
is similar to Eq. (4.98), the “only” difference being the ’scale’ factor r :

p = r
sin i

v(r)
(4.99)

where r is the radius to any point along the ray path, and v(r) the wave speed
at that radius. It can also be shown that (with ∆ the angular distance)

p =
∂T

∂∆
(4.100)

Figure 4.12: Ray parameter in spherical geometry

Notice the similarity between the definition of the ray parameter as the
spatial derivative of travel time for the “flat” (Eq. 4.98) and spherical earth
(Eq. 4.100)! Beware : For a flat earth the unit of ray parameter is s/km (or
s/m), for the spherical earth it is either s/rad or just s or s/deg, so even though
the definitions are completely equivalent there are differences in units!

With the definition for the ray parameter in a spherical Earth (Eq. 4.99)
we can also get a simple expression that relates p to the minimum radius (or
maximum depth) along the ray path : this point is known as the turning or
bottoming point of the ray. A “turning ray” is the spherical Earth equivalent
of the “head wave” (see Fig. 4.12).

rmin sin 90

v(rmin)
=

rmin

v(rmin)
= p (4.101)

Under the assumption of a reference earth model for seismic wave speeds we
can determine the horizontal distance traveled by the ray (e.g., from 4.98) and
the depth to the turning point (from Eq. 4.101) once we know the ray parameter.
Before showing how the ray parameter can be determined from observed data,
let me mention another important concept based on the ray parameter :
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Travel time curves

Eq. (4.98) indicates that the ray parameter, i.e. the horizontal slowness, can be
determined from seismic data by determining the difference in travel time of a
phase arrival at two adjacent stations. Ideally one uses an array of instruments
to do this accurately.

Figure 4.13: Determination of the ray with a seismometer array

In other words, one can determine the value of the ray parameter directly from
the travel time curve, which represents the variation of travel time as a function
of distance : T (X) or T (∆). A travel time curve can be constructed by arrang-
ing observed records of ground motion due to the same explosion or earthquake
as a function of distance. In such a record section the travel time curve of a
particular phase is just the curve that connect onset times of that phase in all
records. One could also construct a travel time curve by using many measure-
ments, phase picks, of the travel time of particular phases, say the P-phase, at
different distances from the source. Seismologists try to find simple models of
radial variations of wave speed that produce travel time curves consistent with
the observed data. ”Theoretical” travel time curves in this sense are thus best
fitting curves determined from some reference model of seismic wave speeds.

Well known models for the Earth’s depth dependent structure are the Pre-
liminary Reference Earth Model (PREM) by Dziewonski & Anderson
(1981), and the more recent iasp91 model (Kennett & Engdahl, 1991). Typ-
ically, this fitting is not done by trial and error but by means of inversion of
either the travel times or the travel time curves. A classical approach that is
discussed in most text books is the one first applied by Herglotz and Wiechert
in the beginning of this century. They were the first to invert travel time data
for simple radially stratified models of seismic wave speed, and their technique
has been used for decades. The first comprehensive model and the correspond-
ing travel time tables was published by Jeffreys & Bullen (1939/1940). In fact
their model, known as the JB model, is still being used for routine earthquake
location by the International Seismological Centre in the U.K.

The ray parameter of a seismic wave (group) arriving at a certain distance
can be thus be determined from the slope of the travel time curve. The straight
line tangent to the travel time curve at ∆ can be written as a function of the
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intercept time σ and the slope p :

p =
∂T

∂∆
⇒ T (∆) = σ +

∂T

∂∆
∆ = σ + p∆ (4.102)

and this equation forms the basis of what is known as the σ − p method.

Figure 4.14: Determination of the ray parameter from the travel-
time curve

The (local) slope of the travel time curve contains important information about
the horizontal slowness, and thus about the wave speed, and the intercept time
σ, the zero offset time, contains information about the layer thickness. This
property is exploited in exploration seismics, where we typically deal with travel
time “curves” that consist of segments of straight lines (see Fig. 4.14).

Another piece of information that can be obtained from travel time curves
is contained in the second derivative of the travel time curve with distance, or
the variation of ray parameter with distance ∂p/∂∆. This quantity controls the
amplitude of the arrivals. To see this, consider a situation (that we will discuss
in more detail below) in which rays with different incident angles at the source
(and receiver) are somehow focused to travel to the same seismographic station
so that the amplitude increases. In that case, δp �= 0 but δ∆ = 0 so

∂p

∂∆
=

∂2T

∂∆2
→ ∞ (4.103)

In other words, the larger ∂p/∂∆, the more energy arrives at a small distance
range δ∆, and the higher the amplitude. In real life the amplitude of seismic
waves is always finite, and this reveals, in fact, one of the shortcomings of
ray theory. If rays are assumed to be infinitesimally narrow the theoretical
amplitude can go to infinity, but in practice the amplitude remains finite as a
result of the interference of the waves that arrive at the same time.

4.17 Radial Earth structure

In a spherical earth we typically encounter three important situations that are
characterized by the geometry of the ray paths, the travel time curves T (∆), the
variation of the ray parameter with distance p(∆), and the σ(p) curves. In the
following, just imagine what happens if you “shoot” rays from an earthquake
source at the surface to increasing distances. In other words, you start of with
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Figure 4.15: Case 1 : Wave speed monotonously increases with depth.

a large take-off angle and you analyze what happens when you decrease this
angle (i.e. let the ray dive steeper into the Earth).

1. The situation that applies to most depth ranges in the Earth’s interior is
that of a steady increase in seismic wave speed (see Fig. 4.15) so that:

• Ray paths : the rays sample progressively deeper regions in the Earth,

• T (∆) : and arrive at progressively larger distances.

• p(∆) : the slope of the travel time curves decrease monotonically with
increasing distance (i.e. the ray parameter decreases for waves travel-
ing to larger distances), so there are no significant changes in ampli-
tude (other than those due to geometrical spreading!) (∂p/∂∆ < 0).

• the intercept time σ decreases with increasing ray parameter (de-
creasing distance!)

A look at the travel time curves suggests that this situation is indeed very
common and describes the overall character of the curves pretty well.

Figure 4.16: Case : The presence of a low-velocity zone.

2. The first important deviation from this situation is when there is a decrease
in wave speed with increasing depth or decreasing radius (see Fig. 4.16).
This gives rise to some interesting effects.

• Ray paths : The rays will still sample progressively deeper regions
when the ray parameter decreases, but the pattern is more complex.
Initially (i.e. above the depth where the wave speed drops) the be-
havior is the same as in the general situation above. However, when
the ray parameter decreases further the rays interact with the low
velocity zone. (A sufficient condition for the ’low velocity zone’ is
that ∂v/∂r < v/r.) The decrease in wave speed results in the deflec-
tion of the ray toward the vertical and the rays do not turn within
the low velocity zone; they only reflect back to the Earth’s surface to
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be recorded by seismometers when the wave speed increases again.
The corresponding waves arrive significantly farther away from the
source than the ones with only a slightly less ray parameter. (You
can also say that here we have a situation where δp ≈ 0 but δ∆ �= 0
so that the amplitude is zero.) Initially, some rays may reflect at the
top of the “base” of the low velocity zone so that energy is projected
to shorter distances with a further decrease in ray parameter (inci-
dence angle), but eventually, the effect of the low wave speed zone
is no longer felt and the rays sample deeper regions and behave in a
manner similar to the general situation.

In terms of ray geometry : there will be a region in the Earth’s interior
that is not sampled.

• T (∆) : The travel time curve will reveal a shadow zone, a region
where (according to our simplified – ray – theory based on the high
frequency approximation) no phases arrive. There will be a small
distance where two phases can arrive : the wave reflected from the
base of the low velocity zone and the direct arrival which is the wave
that turns beneath the LVZ.

• p(∆) : Initially, p will decrease with increasing distance (∂p/∂∆ < 0),
and p(∆) is continuous. When p decreases so that the ray is refracted
through the LVZ two things happen :

(a) the p(∆) curve is no longer continuous since the ray defined by
the incrementally smaller p arrives at a different distance, and

(b) with decreasing p the distance initially decreases because of the
reflection (∂p/∂∆ > 0). If p decreases even further the “normal”
behavior is established again (∂p/∂∆ < 0).

• Amplitude : The amplitude is zero in the shadow zone (the p −
∆ curve is horizontal), but becomes large for arrivals at a distance
just outside the shadow zone corresponding to rays that bottom just
beneath the LVZ (the p − ∆ curve is vertical).

The two most important regions in the Earth where this happens are the
low velocity layer beneath oceanic lithosphere and at the transition from
the mantle to the outer core (for P-waves).

Figure 4.17: Case 3 : A sharp increase in wave speed with depth.
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3. The second important deviation from the “normal” situation is when there
is a region where the wave speed increases rapidly with increasing depth :
∂v/∂r >> 1 (see Fig. 4.17). Let’s for the discussion assume that the
increase in wave speed occurs instantly, i.e. that there is a seismic dis-
continuity in ∂v/∂r (the function v(r) itself is – of course – continuous;
this situation is also known as a first order discontinuity), but you must
realize that similar effects occur when the gradient in wave speed is steep.

• Ray paths : For large incidence angles the rays turn above the dis-
continuity. These form the direct rays. When the incidence angle
(or, equivalently, the ray parameter) decreases the rays will reflect at
the interface. The ray with the smallest ray parameter that does not
reflect is called the grazing ray. The rays that are reflected from
the interface form arrivals at shorter distances those corresponding
to the grazing ray. This leads to a situation where there is a distance
range where we have arrivals of both the direct and the reflected
waves. The situation is slightly more complicated because when the
ray parameter continues to decrease, there is a critical angle where
the rays no longer reflect but refract into the deeper earth. From
that point onward, the behavior of the rays is as one would expect
from the “normal” situation, and the rays go to larger distances. The
reflection will cause the ray paths to cross which causes a caustic
and results in large amplitudes of the phase arrivals.

• T (∆) : The corresponding travel time curve is complicated. In the
distance range between the arrival of the waves associated with the
grazing ray and the critical ray there are, in fact, three arrivals : the
direct phase propagating through the medium above the interface,
the reflected phase, and the refracted wave that propagates in part
in the medium beneath the interface. This distance range it, there-
fore, called the triplication range because there are, in fact, three
arrivals.

• p(∆) : For large ray parameters the behavior is as in the standard sit-
uation; a gradual increase in distance with decreasing p (∂p/∂∆ < 0).
When p becomes smaller than that of the grazing ray the reflection
causes the distance to decrease with decreasing p (∂p/∂∆ > 0), but
when p decreases further and becomes smaller than the for the critical
ray the distance increases again (∂p/∂∆ < 0).

• Amplitude : there are two points in the p(∆) curve where ∂p/∂∆ be-
comes very large (in ray theory the slope can go to infinity!). These
two points correspond to the ray parameter for the grazing and criti-
cally refracted rays, respectively. Consequently, the amplitude of the
phase arrival will be large on either end of the triplication range.
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Final remarks

It is clear that the τ − p curves are the only curves associated with travel time
curves that are continuous in all circumstances, and this is a very attractive
property in, for instance, inversion of travel time information for Earth’s struc-
ture. In fact, this curve also plays a central role in the computation of synthetic
seismograms with the so-called WKBJ approximation.

A significant body of research is based on the arrival times of first arriving,
direct phases such as P. In triplication zones there are typically more than two
arrivals; there can be as many as 5 when triplication zones due to discontinuities
at different depths overlap. The identification problem is aggravated due to the
effect of the caustics on the amplitude : near the cusps in the travel time curve
the later arriving triplication phases have significantly higher amplitude than
the first arrival and for small signal to noise ratio in the data (for instance when
there’s a small earthquake) the first arrival that can be identified in the record
can, in fact, be a later arriving phase. This causes substantial scatter in the
arrival time data in these distance ranges.

The difficulty of phase identification in the triplications due to upper mantle
discontinuities and the related uncertainty in the geometry of the ray paths
involved has important implications for the imaging of upper mantle structure,
which is more difficult than the imaging of lower mantle structure, and for the
accurate location of earthquake hypocenters using these data.

In seismological literature one encounters the terms regional and teleseis-
mic distances. The precise boundary between these distances is not well de-
fined. It basically refers to the distance ranges where effects of an upper mantle
low velocity layer and the discontinuities are (regional) or are not (teleseismic)
significant. Regional distance is the distance where the associated rays bottom
in the upper mantle and transition zone (i.e. above 660 km depth) and this is
about 25◦ to 30◦, with exact values dependent on the reference Earth model
used. Teleseismic arrivals refer to arrivals beyond the triplication range and
refer to turning rays in the lower mantle.

When waves pass through caustic (i.e. the arrivals on the receding branches
of the travel time curves, for instance the PKPAB phase and the reflections off
a seismic discontinuity) the wave form will be distorted due to a 90◦ phase shift
in the phase term iξ(r, t). This will cause additional complications in picking
the arrival time by hand. A better way is to generate synthetic waveforms that
have the same phase shifts and apply cross correlation techniques.
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4.18 Surface waves

Introduction

We have seen before that the solutions of the equations of motion in an un-
bounded, homogeneous, isotropic medium are remarkably simple and that the
total displacement field due to a stress imbalance is completely accounted for
by propagating P and S-waves. We also discussed how this body wave field be-
comes increasingly complex in the presence of interfaces, for instance the Earth’s
(free) surface, and the first order seismic discontinuities such as the Moho, the
410 and 660 km discontinuities, the CMB, and the ICB. The total P- and S-
displacement field is then composed of up and downgoing SV and SH waves and
their interaction is controlled by the reflection and transmission coefficients and
by the boundary conditions at the interfaces.

In a bounded medium there is another important class of seismic waves,
the surface waves; these are caused by the interaction of body waves with the
free surface. Specifically, the interaction of the P-SV field with the free surface
results in Rayleigh waves (after Lord Rayleigh, 1842-1919) whereas the inter-
action of the SH wave field with the free surface combines with internal layering
to produce Love waves (after mathematician A. E. H. Love, 1843-1940, who
predicted the existence of these waves in 1911). Later we will see that both
the body waves and the surface waves can be represented by — and are equiva-
lent with — a superposition of the normal modes of free oscillation of the
Earth and it is important to be aware of the intimate relationship between these
seemingly separate descriptions of wave propagation in the Earth’s interior (see
Table 4.3). All body waves propagating in the Earth’s interior have counterparts
in both propagating surface waves or standing free oscillations. However, each
representation has distinct advantages for studying specific problems related to
Earth’s structure and the seismic source.

Body waves Surface waves Free oscillations
P-SV waves Rayleigh waves Speroidal modes
SH waves Love waves Toroidal modes

Table 4.3: Body waves, surface waves and free oscillation equivalencies.

General properties of surface waves

Surface waves propagate along the Earth’s surface. This seems like a rather
trivial statement but it has important implications for the amplitude of surface
waves.

The cylindrical expansion of the wave front of the waves along the Earth’s
surface implies that the energy of surface waves decreases as 1 over r, with r the
distance between the source and the position of the wave front. The amplitude
of surface waves, related to the square root of the energy, therefore falls of as 1
over

√
r. In contrast, the geometrical spreading of body waves in the Earth’s
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interior implies that the energy decays as 1 over r2 so that the amplitude of
body waves decays as 1 over r. As a result of the difference in geometrical
spreading, the amplitude of surface waves is typically much larger than that of
body waves, in particular at larger distances from the source. (The distance
from source to receiver is typically referred to as the epicentral distance).

Another implication of horizontal wave propagation and energy conservation
is that surface waves are evanescent, i.e., the amplitude decays with increasing
depth and goes to zero for very large depths. As a rule of thumb: the (funda-
mental mode of) surface waves are most sensitive at a depth z = λ/3, with λ the
wave length, and their sensitivity becomes very small for z > λ. For example,
at a period of T = 100s, the wavelength is about 450 km. Those waves are
most sensitive in the upper 180 km of the mantle (where the shear wave speed
is about 4.5 km/s).

The fact that the amplitude of surface waves decays with depth as 1 over
λ means that long wave length (or low frequency) waves are more sensitive to
deeper structure than high frequency waves. In combination with the fact that,
in general, the wave speed changes with depth, this explains why surface waves
are dispersive: surface waves of different frequency propagate with different
wave speeds.

Due to the dispersion, the wave form will change with increasing distance
from the source so that it becomes less clear what is meant if one talks about
the velocity of surface waves; to understand dispersion it will be necessary to
consider two definitions of propagation velocity: group and phase velocity.

The surface waves are typically of substantially lower frequency than the
body waves. Owing to the low frequency (sometimes in the same range as the
eigenfrequencies of man made constructions) and their large amplitude, surface
waves typically cause most of the earthquake damage to buildings.

Rayleigh waves

Interference between P and SV waves near the free surface4 causes a type of
displacement known as Rayleigh waves. Since the SV wave speed β is smaller
than the P wave speed α there is an angle of incidence for an incoming SV wave
that produces a critically refracted P wave, which propagates horizontally along
the interface (see Fig. 4.18)

In other words, P-wave energy is trapped along the surface in a natural way,
i.e., it does not require any particular wave speed variations at depth (Rayleigh
waves can, in principle, exist in a half space). To conserve energy the amplitude
of the horizontally propagating P wave must decrease with depth and vanish at
some point, i.e., a critically refracted P wave is an evanescent wave.

4The boundary condition at the free surface is that the traction on that surface vanishes.
It is convenient to take n3 as the direction normal to the Earth’s surface, so that σ13 = σ23 =
σ33 = 0 and T3 = σi3ni = 0
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Figure 4.18: Free-surface interactions of an incident P and S wave.

Intermezzo 4.4 Evanescent waves

From analysis of a displacement potential φ it can be shown that the amplitude
A(z) of a horizontally propagating, critically refracted P-wave decays with in-
creasing depth.
Consider the potential

φ = A(z)ei(k·r−ωt) = A(z)eiω(px+ηαz−t) (4.104)

with k the wave number vector and p and ηα the horizontal and vertical com-
ponents of the P-wave slowness. From the vector properties of the slowness it
follows that p2 + η2

α = 1/α2. The horizontal slowness p (the ray parameter!),
is constant for the entire wave field generated by the incoming SV wave, which
has a wave speed β < α. In the case that p = 1/c > 1/α then

ηα =

√
1

α2
− p2 = i

√
p2 − 1

α2
= iη̂α (4.105)

so that

φ = B(z)eiω(px−t)e−η̂αωz (4.106)

A similar expression can be given for the SV-wave, with ηβ instead of ηα.
The fact that the argument of the exponential component of the amplitude
factor is real has important implications for the admissible wave speeds. Since
the wave number η̂ω = kz is related to |k| = 2π/λ, with λ the wavelength,
it also follows that the amplitude decay with depth is larger for small wave
lengths than for long wave lengths, and this is of fundamental importance for
the understanding of the dispersion of surface waves. (NB the horizontally
propagating, evanescent P-wave must interfere everywhere with SV-waves; this
can be achieved if there is an incoming SV-wavefield but for Rayleigh waves
the evanescent P-wave interferes with a horizontally propagating, and thus also
evanescent, SV-wave.)

Along the interface the critically refracted P-wave exists simultaneously with
the incident SV-wave; in fact, the evanescent P-waves alone do not satisfy the
stress-free boundary conditions and they cannot propagate along the interface
without coupling to SV. The interference of P and SV-wave produces a particle

Figure by MIT OCW.
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Figure 4.19: Evanescent waves; left evanescent P wave; right evanescent S wave.
Amplitude decays exponentially with increasing distance from the interface.

motion in the x − z plane that is retrograde at shallow depth, but changes to
prograde at larger depth (see Fig. 4.20). This is similar to the particle motion
in ocean waves.

Figure 4.20: Elliptical particle motion for Rayleigh wave propagation.

The Rayleigh wave can thus be observed at both the vertical (in the direc-
tion of z) and horizontal (radial, i.e., in the direction of x) components of the
displacement field (see also Fig. 4.21).

Love waves

Another type of surface wave, the Love wave, is formed by interaction of
the SH-wavefield and the free surface. In contrast to the critically refracted
waves that interfere to produce Rayleigh waves, there is no critical refraction of
SH-waves (angle of incidence = angle of reflection) and in order to satisfy the
boundary conditions there must be total reflection of the SH-waves at the free
surface. SH energy can thus not be trapped near the surface in a half space. In
order for Love waves to exist SH energy has to be reflected back to the surface

Figure by MIT OCW.
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Figure 4.21: Love and Rayleigh wave displacement.

by a wave speed gradient at some depth; there must be a layer over a half
space with the shear wave speed in the layer lower than in the half space. If
the shear wave speed increases with depth a wave guide is formed in which
rays are multiply reflected between the free surface and the turning points of
the rays. In general, some energy may leak into the half space (if the form of
SH body waves), unless the incoming SH-ray strikes the reflecting interface at
(post) critical angles so that — effectively —- a head wave is formed and all
energy is trapped within the wave guide (see Fig. 4.22). The headwave is also
evanescent, and its amplitude decreases in with increasing depth beneath the
layer (see box).

Figure 4.22: Trapped waves in the crust.

Since Love waves are interfering SH-waves, the particle motion is purely
horizontal, in the x2, or y, direction. Wave guides formed by a low-wave speed
layer over a faster half space occur naturally in the Earth; the wave speed in the
crust is larger than that in the mantle beneath the Moho, and at larger depths
there can be a low velocity zone — in particular beneath oceanic lithosphere —
that can cause efficient Love-wave propagation. Love waves are observed only
on the transverse component (parallel to x2) of the displacement field.

Propagation speed

From looking at data we can make an important observation: Love waves arrive
before Rayleigh waves. Love waves propagate intrinsically faster than Rayleigh
waves, see below, but the difference is not large enough to explain the observed
advance of the Love wave arrival. Since Love waves involve only horizontal
displacement whereas Rayleigh waves are composed of P-waves and vertically

Figure by MIT OCW.
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polarized SV-waves, the observed advance of the Love waves suggests a form of
seismic anisotropy with faster wave propagation in the horizontal plane than
in the vertical direction (a situation known as transverse isotropy).

It can be shown, using the information given in the box below, that for
horizontally propagating waves to be evanescent they must travel with a prop-
agation velocity c that is always smaller than the compressional wave speed α,
c = 1/p < α, and also smaller than the shear wave speed β, c = 1/p < β. If
1/p → β the amplitude of the surface waves no longer decays with depth and
conservation of energy is then achieved by the leaking of energy into the half
space in the form of body waves (SV in the case of Rayleigh waves and SH in
the case of Love waves). If this happens one speaks of leaky modes.

So Rayleigh waves always propagate with a speed that is lower than the
shear wave speed. For a half space with shear wave speed β1, the propagation
speed of the Rayleigh wave is about 0.9β1. (In the Earth the situation is more
complicated because of the radial variation of both P and S-wave speed: if the
wave speed gradually increases with depth from c = β1 at the surface to c = β2

in the half space: 0.9β1 < cRayleigh < 0.9β2). We will see below that the surface-
wave propagation speed depends on the wave length, and thus on frequency, of
the wave (dispersion). For Love waves it is slightly different. Here it’s the
head wave that is evanescent; for high-frequency waves (short wavelengths) the
evanescent head wave hardly penetrates into the half space (suppose a shear
wave speed of β2) so that the propagation speed is dominated by SH-propagation
in the layer over the half space (propagation speed c = β1). For longer period
Love waves, the head wave is sensitive to as much larger depth range and the
propagation speed gets closer to the shear wave speed in the half space (β2).
Thus: β1 < cLove < β2.

4.19 Sensitivity kernels

For evanescent waves such as Rayleigh and Love waves we have seen that long
wavelength waves penetrate deeper into the half space than short-wavelength
waves. As a rule of thumb, at a depth of 0.4 λ the amplitude is reduced to
1/e of its value at the surface, and wave propagation is influenced by structure
anywhere in this depth interval. How exactly structure in a certain depth in-
terval influences a wave of a particular frequency is described by a sensitivity
kernel. They represent the maximum partical motion at a certain depth as a
function of frequency, which can be computed from a reference Earth model. A
few examples are given below.

These kernels are a sort of Green’s functions and they are typically con-
volved with (a model of) Earth structure in order to synthesize observables such
as waveforms. (Note: we have seen someting like this before: in travel time to-
mography I mentioned that one solves the system of equations given by — in
matrix notation — Am = d, with m the model vector and d the data vector.
The matrix A contains the kernels and is therefore sometimes referreed to as
the sensitivity matrix. In the case of travel-time tomography the kernels, the



4.20. EXCITATION OF SURFACE WAVES 179

elements of A are simply the path length of a ray in a certain block.)

4.20 Excitation of surface waves

Figure 4.23: Phase speed sensitivity kernels.

Fig. 4.23 can be used to understand in qualitative sense the excitation of
surface waves by earthquakes. In general, the position of the earthquake (i.e.
the depth in our case of depth-dependent media) determines which modes can
be excited. A fundamental mode has no displacement deeper than a certain
depth; by reciprocity, a source (assume a white spectrum of the source so that it
can — in principle — excite all frequencies) that is located at those large depth
will not cause displacement of that fundamental mode at the surface.

4.21 Dispersion: phase and group velocity

The dependence of the depth of penetration on the period is described by the
sensitivity kernels. If the wave speed is constant in the half space the waves
associated with different kernels travel with the same wave speed and thus arrive
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at the same time at a receiver at some distance from the source. But if, as is
the case in Earth, the P and S-wave speed changes with depth, the longer
period waves arrive at a different time than the shorter period waves. In Earth,
the propagation speed of Rayleigh waves is thus frequency-dependent, and the
waveform changes with increasing or decreasing distance from the source. This
frequency dependence of propagation speed is called dispersion. Love waves are
always dispersive since they cannot exist unless there is a layer over a half space,
with the shear wave speed in the half space larger than in the overlying layer.

As a result of dispersion the surface waveform changes with varying distance
from the source, and it is clear that one can no longer describe the wave propaga-
tion with a single wave speed. We describe the propagation velocity of the part
of the waveform that remains constant, such as the onset of the phase arrrival,
a peak, or a trough (see discussion of plane waves) with the phase velocity
c = ω/k. Wave packages with different frequencies travel at different velocities
and their interference results in a phenomenon known as beating (see Interm):
the propagation velocity of the envelope, which is related to the energy, of the
resulting wave train is called the group velocity U.

Peaks or troughs in the wave form, or the onset of a particular phase arrival
in the seismogram, all propagate with the phase velocity. In fact, we have
seen this before when we discussed travel time curves of the body waves, which
depend on the phase velocity. The phase velocity can thus be measured directly
from travel time curves (recall that the horizontal slowness p can be determined
from the slope of the travel time curve at a certain distance).

In Fig. 4.25 the dashed lines through A, B, etc. are travel time curves for
those phases. But note that the frequency of those phases change with distance,
so that the waveform changes. For instance, with increasing distance, the first
arriving phase (A) is composed of waves with larger frequencies (because they
sample deeper).

The group velocity is constant for a given frequency (dω = 0). Thus
the group velocity of surface waves of a particular frequency defines a straight
line through the origin and through the signal of that particular frequency on
records of ground motion at different distances. The group velocity decreases
as the frequency increases. As a result, high frequency phases become less
and less pronounced with increasing distance from the source (or time in the
seismogram).

The group velocity is very important: the energy in surface waves propagates
mainly in the constructively interfering wave packets, which move with the group
velocity.

Narrow-band filtering can isolate the wave packets with specific central fre-
quencies (see Fig.4.26), and the group velocity for that frequency can then be
determined by simply dividing the path length along the surface by the observed
travel time. This technique can be used for the construction of dispersion curves
(see Sec. 4.22).
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Intermezzo 4.5 Group velocity

Consider two harmonic waves with the same amplitude but slightly different
frequencies (ω1 and ω2), wave numbers k1 and k2, and phase velocities k1 =
ω1/c1 and k2 = ω2/c2 (see Fig. 4.24). These waves combine to give the total
displacement

u(x, t) = cos(k1x − ω1t) + cos(k2x − ω2t). (4.107)

If we define ω as the average between ω1 and ω2 so that ω1 + δω = ω =
ω2 −−− δω, and k1 + δk = k = k2 −−− δk, with δω � ω and δk � k, insert
it into (4.107) and apply the cosine rule 2 cos x cos y = cos(x + y) + cos(x − y),
we obtain

u(x, t) = 2 cos(kx − ωt) cos(δkx −−− δωt) (4.108)

This is the product of two cosines, the second of which varies much more slowly
than the first. The second cosine ’modulates’ the amplitude of the first. The
propagation speed of this ’envelope’ is given by U(ω) = δω/δk). In the limit as
δω → 0 and δk → 0

U(ω) =
dω

dk
= c + k

dc

dk
= c −−− λ

dc

dλ
(4.109)

The group velocity is related to interference of waves with slightly different phase
velocities; in other words U depends on c and on how c varies with frequency (or
wavelength or wave number). In the earth dc/dλ > 0 so that the group velocity
is typically smaller than the phase velocity.

Figure 4.24: Two harmonic waves with the same amplitude but slightly differ-
ent frequencies. The resulting ”beating” is visible in the lowermost trace.

4.22 Dispersion curves

We have seen that the radial variation of shear wave speed causes dispersion
of the surface waves. This means that the observed surface wave dispersion
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Figure 4.25: Group velocity windows and phase veclocity curves.

contains structural information about the radial variation of seismic properties.
A plot of the group or phase velocity as a function of frequency is called a
dispersion curve. Their diagnostic value of 1D structure has been explored in
great detail. Typically, the curves produced from observed records are matched
with standard curves computed from an assumed reference Earth model that can
have a structure that is characteristic for a certain type of upper mantle (e.g.,
old/young continents, old/young oceans, etc.). Such analyses have produced the
first maps of the thickness of oceanic lithosphere which revealed the increase in
thickness with increasing age of the lithosphere (or distance from the ridge),
and also underlie the discovery of the Low Velocity Zone (LVZ) at a depth of
about 100 to 200 km beneath most oceans and beneath the younger parts of
continents. Fig. 4.27 shows a variety of typical dispersion curves for different
tectonic provinces.

4.23 Seismology: free oscillations

Like any bounded medium, the Earth can ”ring like a bell” and after occur-
rence of a big earthquake it can oscillate in normal modes with discrete
(eigen)frequencies. Normal modes of the Earth were predicted to exist in the
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Figure 4.26: Frequency-band filtering of seismograms.

early part of the 19th century when mathematicians (Poisson, Rayleigh) stud-
ied elastic wave propagation extensively. However, in absence of sensitive long-
period seismometers the normal models of free oscillation of the Earth remained
undetected until the Benioff strain seismometer recorded the low-frequency sig-
nal due to a great earthquake in Kamchatka (1952). With the global network of
highly sensitive broad-band seismometers many (many more than 1500) normal
modes have now been observed and identified.

The ”tone” of the ringing contains information about the structure of the
Earth’s interior. Since the entire Earth is involved in the free oscillations, the
normal modes are more sensitive to average properties and whole-earth structure
than to local anomalies. Of particular relevance is also that the low-frequency
waves have to do work against gravity so that records of the modes contain in-
formation about the density distribution within the Earth. For these reasons the
normal modes have played a central role in the development of global reference
models for seismic properties.

A second important implication of normal modes is that the displacement of
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Figure 4.27: Dispersion curves for different tectonic provinces.

any number of normal modes can be summed as a Fourier series, with certain
weights for the different frequencies, in order to construct synthetic seismograms
(a technique known as mode summation). In fact, body and surface-wave
propagation can be simulated by superposition of a sufficient number of fun-
damental and higher modes. In the discussion of surface waves we considered
a “flat” Earth and an infinite half space (overlain, in case of Love waves, by a
low wave speed wave guide). This is only useful to derive some fundamental
properties, in particular at relatively short periods (T < 200s), but for long
period surface waves , which penetrate deep into the Earth’s interior and for
the interference of waves that have propagated along the circumference of the
Earth, one must take sphericity into account. The surface waves were character-
ized by their frequency ω and wave number k. We did not consider boundaries
of the medium other than the free surface, and the frequency was taken as the
independent variable: for each frequency there are only certain discrete wave
numbers k = kn(ω) for which the boundary conditions could be satisfied. In-
stead we could have formulated the problem in terms of discrete eigenfrequencies
ω = ωn(k) with k the independent variable. This formalism makes more sense
for the discussion of free oscillations of the Earth, since the medium is bounded.
In the spherical geometry the “horizontal wave number” k is fixed at certain
discrete values by the finite lateral extend of the medium. One often uses the
angular wave number l instead of k, with l zero or a positive integer (see Fig.
4.28).

Figure by MIT OCW.
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Figure 4.28: Standing waves in a spherical Earth.

Normal modes and overtones

To get some insight in the problem, let’s consider the simple situation of vibra-
tions of a string held fixed at either end. The motions in the string must obey
the 1D wave equation, with c the phase velocity:

∂2u

∂x2
=

1

c2

∂2u

∂t2
(4.110)

The general solution of this equation is

u(x, t) = Aeiω(t+ x
c
) + Beiω(t− x

c
) + Ce−iω(t+ x

c
) + De−iω(t− x

c
) (4.111)

The constants A − D can be determined from the boundary conditions, i.e.
the fixed end points: u(0, t) = u(L, t) = 0. The first gives A = −B and C = −D.
The condition at x = L then gives

(Aeiωt − Ce−iωt)2i sin

(
ωL

c

)
= 0 (4.112)

which has nontrivial solutions for ωL/c = (n + 1)π, n = 0, 1, 2, 3, · · ·∞.
These discrete frequencies, labeled ωn, are called the eigenfrequencies of this
bounded system. The corresponding displacements, Eq. (4.110), are the eigen-
functions or normal modes of the system and are of the form u = exp(iωnt) sin(ωnx/c).
The fundamental mode is given for n = 0, and has no internal nodes (where
u = 0) within the system; n > 0 corresponds to higher modes or overtones,
which have n internal nodes. It is important to realize that the motion of each
of the modes occurs without horizontal motion of the nodes: they are stand-
ing waves and the modes themselves don’t propagate horizontally. However,
constructive interference of the coexisting vibrations corresponds to traveling
waves. We have previously said that P and S-waves are the complete solutions
to the wave equation, and it can be shown that the normals modes of free oscil-
lations are, in fact, not fundamentally different from the body waves. Normal
modes can be used to describe body wave propagation. Indeed, any propagat-
ing disturbance can be represented by an infinite weighted sum of the eigen
frequencies (Fourier series!) so that normal mode summation can be used to
simulate propagating waves such as body waves and surface waves:

u(x, t) =

∞∑
n=0

(
Aneiωnt + Bne−ωnt

)
(4.113)

Figure by MIT OCW.
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Figure 4.29: A string under tension. Fundamental mode is given by n = 0; n
= 1, 2, ... are the over tones.

Power spectrum

The individual modes can, in general, not be observed directly from the seis-
mograms. Free oscillations are studied with spectral techniques. If one was to
take a Fourier transform of a sufficiently long record of ground motion, typically
many hours or even days, one gets a power spectrum that reveals the distinct
eigenfrequencies of the Earth’s free oscillations (see Fig. 4.30).

Nomenclature of normal modes

Normal modes of free oscillation are just the solutions of the wave equation in
a spherical coordinate system and the nomenclature of the modes is therefore
based on spherical harmonics. Recall that the gravity and magnetic poten-
tials were, in fact, summations of modes with different coefficients (Gaussian
coefficients in the case of the magnetic potential). The expression of mode sum-
mation is similar to the spherical harmonic expressions used when we discussed,
for instance, the geoid and the magnetic field with two differences: (1) the nor-
malization of the harmonic coefficients are typically specific to each application
(seismology, gravity, geomagnetism), but don’t worry about that now, and (2)
instead of doing the summation from m = 0 to l with two (Gaussian) coeffi-
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Figure 4.30: Surface and nodal patterns of free oscillations.

cients, in seismology one typically uses a notation that sums from m = −l to +l:
in both cases there are 2l + 1 coefficients (this is called a 2l + 1 degeneracy).

There are two basic types of free oscillation (1) spheroidal modes, which
are analogous to the P-SV-system and the Rayleigh waves and have a component
of motion parallel to the radius from the Earth’s center; and (2) toroidal or tor-
sional modes involving shear motions parallel to the Earth’s surface, analogous
to SH and Love waves. Spheroidal modes involve expansion and contraction
of (parts of) the Earth, whereas toroidal modes involve differential rotation of
parts of the globe. Gravity does not influence the toroidal motion but long-
period spheroidal oscillations do involve significant work against gravity; obser-
vation of these modes can therefore yield information about the Earth’s gross
density structure.

The toroidal and spheroidal modes are labeled nTl and nSl , respectively,
where n indicates the number of nodes along the radius of the Earth5 Torsional
modes are only sensitive to shear wave speed; spheroidal modes are sensitive

5The latter would be true if the Earth was homogeneous and uniform; in reality it is more
complicated. The behavior of normal modes in the Earth is complicated by stratification, the
existence of a fluid outer core, by the rotation of the sphere, and, of course, by deviations
from sphericity (3D structure + anisotropy).

Figure by MIT OCW.
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to compressional and shear wave speed and density – n is the overtone number
— and l (the angular order or degree or wave number) indicates the number of
nodal planes on the surface (see Fig. 4.31).

Figure 4.31: Different toroidal modes (0T2, 1T2; top) and spheroidal modes
(0S2, 0S3; bottom).

For example, the mode 0T2 corresponds to alternating twisting of the entire
upper and lower hemisphere of the spherical body; the mode 1T2 corresponds
to similar twisting of the center of the sphere, but now with twisting in the
reverse direction of the outer part of the sphere (see Fig. 4.32). The modes
with n = 0 sense the gross mantle structure, and the modes with increasing n
are, in general, sensitive to elastic properties at different depths in the sphere.
For toroidal modes, the poles have no motion, counting as the l = 1 term. The
mode 0T1 cannot exist. Spheroidal modes with l = 0 have no nodal planes at
the surface and are therefore sometimes called radial modes. The mode 0S0

involves expansion and contraction of the sphere as a whole; mode 0S2 has two
equatorial bands of zero displacement, 0S3 has three nodal lines etc. (see Fig.
4.32).

Mode Period (s) Mode Period (s)

0S0 1277.52 0T2 2636.38

0S2 3223.25 0T10 618.97

0S15 426.15 0T20 360.03

0S30 262.09 0T30 257.76

0S45 193.91 0T40 200.95

0S60 153.24 0T50 164.70

0S150 66.90 0T60 139.46

1S2 1470.85 1T2 756.57

1S10 465.46 1T10 381.65

2S10 415.92 2T40 123.56

Table 4.4: Oscillation periods of some normal modes.

Table 4.4 gives the periods of some of the observed modes. The normal mode
with the longest period is the spheroidal mode 0S2, with a period of about 54

Figure by MIT OCW.
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minutes. In the last 4 decades many modes have been identified. This also is
a game of matching the observed spectra with model predictions, identifying
the modes, using that to improve the reference Earth models, and the improved
starting models may then allow the identification of previously unknown modes.

Normal mode splitting: aspherical Earth’s structure

We have used the notation of modes in terms of S and T and the degree l
and the overtone number n, for instance 0S2. Just as in the use of spherical
harmonics to describe the gravity and magnetic fields we also have the order m
in seismology. (As a reminder: there are l nodal lines at the surface: there are
m nodal lines along great circles (m=0 gives the zonal harmonics) and there
are thus l − m nodal lines along latitude. For l �= m: tesseral harmonics). For
each angular degree l there are 2l + 1 values for m. In a spherically symmetric,
non-rotating body the 2l + 1 modes have the same eigenfrequency, the modes
correspond to a single peak in the spectrum — the overlapping peaks are known
as multiplets — and this redundancy is the reason why the superscript m is
usually ignored in the notation. However, the 5 different modes that constitute

0S2 have different angular moments and when the body is rotating the 2l + 1
peaks, or singlets do not exactly overlap any more. This phenomenon is known
as the splitting of the modes. The split modes have eigenfrequencies that are
very close together so that interference occurs.

Splitting can be caused by rotation, but also by aspherical Earth’s structure
such as lateral variation in isotropic seismic properties (due to dynamic processes
in the mantle) or by seismic anisotropy. Conversely, the analysis of splitting
in the power spectra can give invaluable information about 3D structure and
anisotropy.
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