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Abstract 

We describe the theory of Geostrophic Balance, derive key equations and discuss 

associated physical balances.1 

1 Geostrophic balance 

If the flow is such that the Rossby number is small – Ro ¿ 1 – where  

U 
Ro = (1) 

fL  

(here U is a typical horizontal current speed, f is the Coriolis parameter and L is a typical 

horizontal scale over which U varies), then the Coriolis force is balanced by the pressure 

gradient force in the horizontal component of the momentum equation, which reduces to: 

1 
fbz × u+ ∇p = 0  (2) 

ρ 

where bz is a unit vector in the vertical direction. 

In situations where (as is always the case) Eq.(2) is only an approximate balance, the 

velocity u defined by (2) – involving only the horizontal components of u – is  known  as  the  

geostrophic wind (or current). Rewriting Eq.(2), we can define the geostrophic wind (since bz × bz × u = −u) as  
1 

ug = bz × ∇p ,  (3) 
ρf 

or, writing out its Cartesian components, 

ug = − 
1 ∂p 

; (4) 
ρf ∂y 
1 ∂p 

vg = . 
ρf ∂x 

1
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Figure 1: Schematic of two isobars on a horizontal surface. The magnitude of u increases as the 
siobars become closer together. 

We see from Eq.(2) that the geostrophic flow is normal to the pressure gradient: i.e. along 

isobars (lines of constant pressure) and its speed is proportional to the pressure gradient. 

Consider Fig.1, the curved lines show two isobars on which pressure has the constant values 

p and p + δp. Their separation is δs. From Eq.(3), the flow speed is 

1 1 δp|ug| = |∇p| = . 
ρf ρf δs 

Since δp is constant along the flow, |ug| ∝ (δs)−1: the  flow is strongest where the isobars 

are closest together. Since the geostrophic flow cannot cross the isobars, the latter act like 

banks of a river, causing the flow to speed up where the river is narrow and slow down where 

it is wide. 

As  shown in Fig.2,  the  flow is (in the northern hemisphere) anticlockwise (cyclonic) 

around a low pressure center, and clockwise (anticyclonic) around a center of high pressure. 

(“Cyclonic” means in the same sense as the vertical component of the Earth’s rotation, 

and “anticyclonic” the opposite. So, in the southern hemisphere where f <  0, the  flow 

is clockwise, but still cyclonic, around a low pressure center.) This rule is summarized in 

1Notes to accompany 12.307: Weather and Climate Laboratory. For a more detailed description see notes 
on 12.003 web page here: http://paoc.mit.edu/labweb/notes.htm 

http://paoc.mit.edu/labweb/notes.htm
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Figure 2: Geostrophic flow around (left) a low pressure center and (right) a high pressure center. 
(Northern hemisphere case, f >  0.) The effect of Coriolis delecting flow ‘to the right’ is balanced by 
the horizontal component of the pressure gradient force, −1 

ρ ∇p, directed from high to low pressure. 

Figure 3: 

Buys-Ballot’s law: 

If you stand with your back to the wind in the northern 

hemisphere, low pressure is on your left. 

We now consider pressure coordinate versions of the geostrophic and continuity equations 

which allow some simplifications (with regard to density variations) to be made. 

1.1 The geostrophic wind in pressure coordinates 

In order to apply the geostrophic equations to atmospheric observations and particularly 

upper air analyses (see below), we need to express them in terms of height gradients on a 

pressure surface, rather than, as in Eq.(4), of pressure gradients at constant height. Consider 

Fig.3. The figure depicts a surface of constant height z0, and one of constant height p0, which  

intersect at A, where of course pressure is pA = p0 and height is zA = z0.  At constant height,  
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the gradient of pressure in the x-direction is 

4 

µ ¶
∂p pC − p0 

= 
∂x δx z 

where δx is the (small) distance between C and A. Now, the gradient of height along the 

constant pressure surface is µ ¶
∂z zB − z0 

= . 
∂x δx p 

Since zC = z0, and  pB = p0, we can use the hydrostatic balance equation Eq.(??) to  write  

pC − p0 pC − pB ∂p 
= = − = +gρ 

zB − z0 zB − zC ∂z 

Therefore (and invoking a similar result in the y-direction), it follows that µ ¶ µ ¶
∂p ∂z 

= gρ ;
∂x ∂xµ ¶z µ ¶p 

∂p ∂z 
= gρ . 

∂y z ∂y p 

Therefore Eq.(3) becomes, in pressure coordinates, 

g 
ug = 

f 
bzp × ∇pz ,  (5) 

where bzp is the upward unit vector in pressure coordinates and ∇p denotes the gradient 

operator in pressure coordinates. In component form, 

(ug, vg) =

µ
− 
g 
f 
∂z 
∂y

, 
g 
f 
∂z 
∂x

¶ 

. (6) 

Note that, like p contours on surfaces of constant z, z contours on constant p are streamlines 

of the geostrophic flow. Note that, in pressure coordinates, the geostrophic wind is, as before, 

nondivergent if f is taken as constant: 

∂u ∂v ∇ · ug = + = 0 . 
∂x ∂y 

Let’s now look at some synoptic charts to see some of these ideas in action. 
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Figure 4: 500mb wind and geopotential height field on October  9th 2001.  The wind blows  
away from the quiver: one full quiver denotes a speed of 5ms−1, one half-quiver a speed of 
2.5ms−1 . The geopotential height is in meters. 

1.2 Highs and Lows; synoptic charts 

Fig.4 shows the height of the 500mb surface (in geopotential metres, contoured) plotted with 

the observed wind vector (one full quiver represents a wind speed of 5 ms−1). Note how the 

wind blows along the isobars and is strongest the closer the isobars are together - see the 

schematic diagram in Fig.2. At this level, away from frictional effects at the ground, the 

wind is close to geostrophic. 
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Figure 5: 

1.3 Visualizing geostrophic balance on the sphere 

To get a feel for geostrophic balance on the sphere it is very useful to consider a ring of air 

moving eastward at speed u relative to the underlying rotating earth. 

There is a centrifugal acceleration directed outwards perpendicular to the earth’s axis of 

rotation, the vector A sketched in fig(5): 

V 2 

=
(u + Ωr)2 

= Ω2 r + 2Ωu + 
u2	

(7) 
r r r 

Here V is the ‘absolute’ velocity the fluid has viewed from an observer fixed in space  looking  

back at the earth. Let’s now consider the terms in turn: 

•	 Ω2r - this is the centrifugal acceleration acting on a particle fixed to the earth. As 

discussed above, this acceleration is included in the gravity which is usually measured 

and is the reason that the earth is not a perfect sphere. 

•	 2Ωu + u
r 

2 
- the additional centrifugal acceleration due to motion relative to the earth. 

Note that if 
Ω
u
r << 1, we may neglect the term in u2 . For the earth Ro = 

Ω
u
r ∼ 0.02 

and so the 2Ωu term dominates. It is directed outward perpendicular to the axis of 

rotation and can be resolved: perpendicular to the earth’s surface - vector B in the 

diagram - and parallel to the earth’s surface - vector C in the diagram. 

Component B changes the weight of the ring slightly - it is very small compared to g, 

the acceleration due to gravity, and so unimportant. 
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Figure 6: 

Component C, parallel to the earth’s surface, is the Coriolis acceleration: 

2Ω sin ϕ × u 

So there is a centrifugal force directed toward the equator because of the motion of 

the ring of air relative to the earth. It is this force that balances the pressure gradient 

force associated with the sloping isobaric surfaces induced by the pole-equator temperature 

gradient. 

Let’s postulate a balance between the Coriolis force and the pressure-gradient force di-

rected from equator to pole associated with the tilted isobaric surfaces - see Fig.6. 

∂p
ρadϕdz× 2Ω sin ϕu = − dϕdz| {z } | {z } | ∂ϕ{z }mass acceleration 

p_grad 

Introducing a coordinate y which points northwards on  the  earth’s surface,  dy = adϕ, the  

above reduces to: 

fu  +
1 ∂p 

= 0  (8) 
ρ ∂y 

where f = 2Ω sin ϕ is the Coriolis parameter. 

This is just one component of the geostrophic relation, Eq.(4), between pressure gradient 

forces and Coriolis forces. 




