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GASEOUS CHEMICAL RATE EXPRESSIONS IN MODELS 
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Summary of gaseous chemical rate expressions for 

production and loss of species i including surface 

sources and sinks: 

 

(1) J
i
[i] where J

i
 can be derived from UV 

measurements 

 

(1) k
ij
[i][j] where k

ij
 is given 

 

(1) l
ijm

[i][j][m] where l
ijm

 is given 

 

(2)  
surface  

= w
dep

[i] where w
dep

 is given 

 

(1)  
surface

  either given or estimated from model-

measurement comparison  

i emissions 

  i sink 
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AEROSOL PHYSICAL RATE EXPRESSIONS IN MODELS  

dNk

dt
= Rate of change of aerosol number density 

            (with size between k  and k + dk) 

         = Emission (surface and in situ)

         + Condensation of precursor gases 

         + Complete evaporation of water from cloud droplets

         + Coagulation of smaller aerosols

         + Fragmentation of larger aerosols

        ±  Sedimentation (net into & out of layer) 

         -  Coagulation with any other aerosols

         -  Coalescence (into water droplets)

         -  Fragmentation by collisions with other aerosols

         -  Deposition (all surfaces)

         -  Rainout (to surface)

         -  "Activation" to form cloud droplets
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dNcoag  k
dt coagN

*N

dNcoal  k **

dt coalN N

dNdep  v
dt depN

dNrain N 
dt  rain

etc.



DIAGNOSTIC EQUATIONS ASSUME A PHOTOCHEMICAL STEADY 

STATE (PSSA) 

Recall PSSA equations ignore influence of meteorology so valid only when wind speed u ~ 0 

 

In PSSA: rate of loss (L
i
) = rate of production (P

i
) 

e. g. for the ozone chemical reaction set including NOx and HOx chemistry: 

 

(1) NO + O
3 
-> NO

2
 + O

2
  

(2) NO
2
 + hv -> NO + O 

(3) O + O
2
 + M -> O

3
 + M 

(4) O
3
 + hv -> O

2
 + O 

(5) NO
2
 + OH + M -> HNO

3
 + M 

(6) OH + CO -> H + CO
2
 

(7) H + O
2
 + M -> HO

2
 + M 

(8) HO
2
 + NO -> OH + NO

2
 

 

We have for NO, HO
2
, H and O concentrations: 

 

k
1
[O

3
][NO] + k

8
[HO

2
][NO] = J

2
[NO

2
] 

i.e. [NO
2
]/[NO] = (k

1
[O

3
] + k

8
[HO

2
])/J

2
 

 

k
8
[HO

2
][NO] = l

7
[H][O

2
][M]  

i.e. [HO
2
] /[H] = l

7
[O

2
][M]/(k

8
[NO])  

 

l
7
[H][O

2
][M]= k

6
[CO][OH] 

i.e. [H]/[OH] = k
6
[CO]/(l

7
[O

2
][M]) 

 

 l
3
[O][O

2
][ M]= J

2
[NO

2
] + J

4
[O

3
] 

i.e. [O]/[O
3
] = (J

2
[NO

2
]/[O

3
] + J

4
)/(l

3
[O

2
][M]) 

 

Recall the PSSA analytical solution when we consider NOx but not HOx chemistry: 
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 PROGNOSTIC (CONTINUITY) EQUATIONS TAKE 

ACCOUNT OF PROGNOSTIC CHEMISTRY AND 

TRANSPORT BY WINDS 

The local change 
 (rate of accumulation) 

of i in the box

Actual production  
or destruction of  i 

within the box 

Change in [i] due to loss to downstream 
boxes or arrival from an upstream  

box (called advection or convection) 

HYBRID

[i] d[i]    [ ]chem   u[i]   v[i]  w[i]
t

 CHEMICAL KINETIC EQUATIONS 

(1) Use prognostic equations, (d[i]/dt)  = P  - L ) for long lived 
chemistry i i

species like [O ] (=[O] + [O ]) and [NO ](=[NO + [NO ]) 
x 3 x 2

(2) Use diagnostic (steady state) equations, P  = L  for short lived 
i i

species like O, NO, H and HO  to provide the ratios  [O]/[O ], 
2 3

[NO ]/[NO], [HO ]/[H] and [H]/[OH] 
2 2

(3) Assume [HO ] = [H] + [OH] + [HO ] ~ [HO ] is given 
x 2 2

(4) Use observed values for [CO] 

(5) Use lowest observed [NO ] and [O ] as boundary conditions for 
x 3

NO  and O
x x 
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dt x y z




  

A SIMPLE PHOTOCHEMICAL BOX MODEL  

to simulate time-varying concentrations of trace gases and 

aerosols using the PROGNOSTIC CONTINUITY EQUATION 
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d[i]box u
 Pi  Li   [i]upwind  [i]box  ([i]top  [i]box ) /

dt X exchange  (surface surface
i,emissions i,sin k ) /Z



  

STEADY�STATE :

(Xi = [i]/[M] = mole_ fraction)
Define τ(NO) = 1/(k[O

3
] 

where k is rate constant 

for reaction of NO (e.g. 

from engine exhausts) 

with ozone 

EXAMPLE: ANALYTICAL SOLUTION TO THE CONTINUITY EQUATION RELATING 

MOLE FRACTION (X ) OF i=NO (as a  function of distance (x) from a source 
i

region) ASSUMING A CONSTANT HORIZONTAL WIND SPEED (u), A 

PHOTOCHEMICAL STEADY-STATE, A ONE DIMENSIONAL (x AXIS) MODEL and 

LOSS DUE TO NO + O   NO  + O WITH [O ] >> [NO] 
3 2 2  3

   
STEADYSTEADYST �EADY�EADY STATESTATEST :
d[i]downwind d[i] dX

 0  Pi  L
dt i  u  P

dx i  Li  [M]u i

dx
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INCORPORATING METEOROLOGY IN THE BOX MODEL 

 
1. USE THE u MEASUREMENTS TO ALIGN THE MODEL x AXIS AND USE IN THE        

BOX MODEL ADVECTION TERMS. 

2. USE THE T & u MEASUREMENTS TO CALCULATE A RICHARDSON NUMBER TO 

HELP CHOOSE SUITABLE t
exchange

 VALUES.  

3. USE TEMPERATURE SOUNDINGS OR HAZE LAYER HEIGHT TO ESTIMATE Z 

T OP OF BOUNDARY LAYER 

© Cory Cripe. Some rights reserved. License: CC BY-NC

3.0. This content is excluded from our Creative
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http://www.ck12.org/user:Y3JpcGVjQGxjc2MuazEyLmluLnVz/section/Atmospheric-Layers/
http://ocw.mit.edu/help/faq-fair-use/


TRANSPORT,

CHEMISTRY AND 

RADIATION 

 COMPONENTS 

IN COMPLEX 3D 

MODELS 
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Interactions Between Air Pollution and Climate
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COMPONENTS OF ATMOSPHERIC CHEMISTRY MODELS

DYNAMICAL EQUATIONS

MASS CONTINUITY EQUATION

MOMENTUM EQUATIONS

THERMODYNAMIC EQUATION

CHEMICAL

CONTINUITY EQUATIONS

RADIATION
EQUATIONS

Winds , Eddy diffusion coefficients

Temperature

 Rates 
   for
Heating

R
ates fo

r C
h

em
istry

Concentrations
(O3, etc.)

For
Unpredicted
green house
gases use
scenarios or
extra polations

For Source gases 
use predictions,
extra polations
or scenarios

  U.V Fluxes

For photodissociation 

rates

{

{
∂ [i]
∂t = Pi - Li -    . 

∆( [ i ] V )~

Figure by MIT OpenCourseWare.



The spatial 

grid 

We divide the earth’s 

atmosphere into a 

finite number of boxes 

(grid cells). 

 

Assume that each 

variable has the same 

value throughout the 

box. 

 

Write a budget for each 

each box, defining the 

changes within the 

box, and the flows 

between the boxes. 

© John Wiley & Sons, Inc. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
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INTERSPECIES (CO-PM) CORRELATIONS 

[Note Expect PM10 > PM2.5 > PM1] 
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CO - WIND (DIRECTION, SPEED) CORRELATIONS 

USE i-
PHONE 

COMPAS
S TO 

INTEPRET 
RE BLDG 

54  

N 
 

W 
 

S 
 

E 
 

N 
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PM - WIND (DIRECTION, SPEED) CORRELATIONS 

N 
 

W 
 

S 
 

E 
 

N 

USE i-
PHONE 

COMPAS
S TO 

INTEPRET 
RE BLDG 

54  
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[Note Expect NOx  > NO] 

[Note Expect O3  > 40ppb ] 
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[Note Expect NOx  > NO] 

[Note Expect O3  > 40ppb ] 
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